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Abstract

Systems under external confinement and constraints often show interesting properties. In this

thesis, we study some systems under external confinement. We begin by finding out the probability

distribution of end-to-end separation of a semiflexible polymer within the Worm Like Chain model

using Monte- Carlo simulations (MC). In the constant extension ensemble, where the two ends of

the polymer are placed in stiff potential traps created by laser tweezers, the probability distribution

shows triple maxima indicating a non-monotonic force- extension in some intermediate regime of

polymer stiffness. Whereas this feature is absent in constant force ensemble. Our study on this

system revealed the ensemble dependence of physical properties for finite sized systems.Then, we

fix the orientations at the ends of a polymer and find that the orientation, as well as the ensemble,

control the statistics and mechanical properties of a semi- flexible polymer. We present an exact

theory to calculate the partition functions in both the Helmholtz and Gibbs ensembles and this

theory takes care of the orientations at the ends of the polymer. We find multimodality in

Helmholtz ensemble as a generic signature of semi- flexibility.

Secondly, we study Laser Induced Freezing (LIF) where a colloidal liquid is constrained by an

external laser field periodic in one direction. Using a Kosterlitz- Thouless type renormalization

group calculation and a restricted MC simulation we calculate the phase diagrams for model

colloids interacting via Hard Disk, Soft Disk and DLVO potentials. The phase diagrams match

exactly with the corresponding phase diagrams simulated by other groups, thereby proving that

LIF is indeed a dislocation mediated transition.

Lastly, we study the phase behaviors and failure mechanism of a two- dimensional solid confined

within a hard wall channel using MC and Molecular dynamics simulations. This system fails by

nucleation of smectic phase within the solid. We have shown that thinner strips are stronger!

The failure is ductile showing reversible plasticity. Density functional arguments can capture

some of these features qualitatively. We have used a mean field calculation to find out the phase

diagram of this system in density- channel width plane. We show that fluctuations in quasi one

dimension lead to very strange behavior, namely a system that looks solid considering its structure

factor shows vanishingly small shear modulus like a liquid! We study the impact of this reversible

failure on transport properties. We find that the heat current in response to tensile strain varies

differently depending on whether the strain is imposed in the confining direction or the other.

We propose a simple free volume calculation that captures the strain response of heat current,

exactly, within small strains.
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1 Introduction

Every year during the month of March a family of ragged gypsies would set up

their tents near the village, and with a great uproar of pipes and kettledrums

they would display new innovations. – G. G. Márquez

Traditionally, the science of thermodynamics and statistical mechanics were concerned with de-

termining the properties of materials in the so-called thermodynamic limit [1]. In this limit,

relevant for most materials and experimental situations, the number of particles N → ∞ and

all statistical mechanical ensembles e.g. Helmholtz (constant number, volume, strain, etc.) and

Gibbs (constant chemical potential, pressure, stress, etc.) are rigorously equivalent. Also, in

this limit, for most systems with short ranged interactions and compact shape, the nature of the

boundaries and boundary fields have no impact on bulk properties.

Historically, the need for examining systems far removed from the thermodynamic limit arose

first with the advent of computers and computer simulation techniques in the early 1950s and

60s. Early computers were not very powerful and the largest system sizes that could be handled

were small. The need for extrapolating results obtained from small system sizes used in computer

simulations for predicting phase boundaries, susceptibilities, critical exponents etc. as measured

in the laboratory spawned the discipline of finite size scaling [2–4]. The early works of Binder

[5, 6] and Fisher[7–10] are significant in this context. The emerging ideas of the renormalization

group [11, 12] had a direct impact on this endeavor and aided immensely our understanding of

the thermodynamics of small systems.

Simultaneously, technological breakthroughs in semiconductors, magnetic recording devices and

experiments on surfaces, thin films and adsorbtion pointed out the importance of boundaries

and surfaces in determining materials properties [13, 14]. Surface phases, wetting, the physics

of interfaces and surface phase transformations became topics of intense study using computer

simulations, renormalization group theory and experiments. In the later part of the last century

rapid advances in primarily two areas of science and technology were responsible for a further

spurt of activity in trying to understand the role of finite size in determining the properties

of materials. Firstly, new techniques like the use of lasers in manipulating objects and novel

microscopic techniques meant that one could measure properties of systems down to the size

of a large molecule e.g. biologically important polymers like proteins and DNA [15–17]. Rapid

3



4 Introduction

advances in biotechnology made it possible for us to ultimately measure forces involved, say, in

the replication of DNA or in protein synthesis [18, 19]. Nanotechnology on the other hand [20],

using techniques like laser trapping, atomic force and scanning tunneling microscopy could finally

make the study of finite systems useful and imperative for its own sake, rather than a precursor

to taking the thermodynamic limit.

It is this general context which provides the backdrop of this thesis. In this thesis we have

focussed on a number of such systems which are either “small” in the sense of being far from the

thermodynamic limit and/or are acted upon by external fields which produce severe constraints

that leads to significant change in their behaviour which may be strongly ensemble dependent.

We study their statistical and mechanical properties, phase behaviors etc. We also study transport

properties of one such system as it undergoes structural transformations that are controlled by

external confinement and strains. The structure of this thesis is as follows.

In the next two chapters we study the properties of a semiflexible polymer. We work within

a coarse grained model – the worm like chain model – of such a polymer. This model has been

successful in predicting mechanical properties obtained from single molecule experiments on real

biological polymers like, DNA, microtubules, actin filaments etc. In chapter-2, we show that in

the Helmholtz ensemble these polymers can show a non- monotonic force versus extension which

is an impossibility if the experiment on this finite chain is made in the Gibbs ensemble or in the

thermodynamic limit. This behavior is obtained in a certain range of stiffness of a semiflexible

polymer and gives a qualitative signature of semiflexibility vis-a-vis a flexible polymer. In this

chapter the non- monotonic force- extension curve was obtained for a polymer whose boundaries

were free to rotate. In chapter-3, we present an exact theory to calculate the properties of a

semi- flexible polymer for all possible bending rigidities taking into account the orientations of

ends of a polymer. Using this theory and simulations we establish that imposing constraints

in boundary orientations vary the statistics and mechanical properties of the polymer. Thus in

these two chapters we establish that for semi- flexible polymers, both ensembles and boundary

orientations leave important impact on the system properties.

In chapter-3, we study the phenomenon of laser induced freezing and reentrant melting. This

comes about due to constraining a two dimensional system by imposing an external potential that

is constant in one direction and periodically modulated in the other. We take the simplest case

where the periodicity of the external potential is commensurate with spacings between the lattice

planes of the system. Thus the external constraint permeates the whole system. With change in

the strength of this potential phase transitions occur between a modulated liquid and a locked

floating solid phase. We use a constrained Monte- Carlo simulation to obtain input parameters

which are used in a numerical renormalization group scheme to test a recently proposed defect

mediated melting theory for this system.

In the following chapter, we study the impact of a different kind of external potential on a two
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dimensional solid. We confine the solid in a quasi one dimensional hard channel such that, in the

direction of confinement the solid is only a few atomic layers thick and study its mechanical and

phase behavior. Study of this system is important due to the recent interest in nano- technology.

This confinement is a boundary effect and drastically changes the properties of the solid and

introduces many layering transitions, which are absent in the thermodynamic limit. We also

study the anomalous and reversible failure of this system under tensile strain. We present mean

field calculations to substantiate our simulation data. We end this chapter with a discussion on

enhanced flcutuations in this system due to the reduced dimensionality.

In chapter-6, we find out the impact of reversible failure on the heat transport properties of

this system. We use molecular dynamics simulation to calculate the change in heat current as the

system undergoes tensile strain. The change in heat current in response to strain imposed in the

confining direction is very different from the case when the strain is imposed in the perpendicular

direction. We introduce a free volume like theory to calculate the heat current and obtain exact

match with simulation results up to small strains.

In summary, in this thesis we have taken up a set of independent problems which are however

connected by the theme of finite size effects and the effect of boundaries and constraints on the

determination of overall behavior. Each of the chapters in the thesis are fairly self-contained and

more or less independent of each other.
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2 Nonmonotonic Force-extension in Semi-flexible Polymer

“Things have a life of there own”, the gypsy proclaimed with a harsh accent.

“It’s simply a matter of waking up their souls”. – G. G. Márquez

The simplest model for describing semiflexible polymers without self-avoidance is the so called

Worm-Like-Chain (WLC) model [21–23]. In this model the polymer is modeled as a continuous

curve that can be specified by a d−dimensional (d > 1) vector x̄(s), s being the distance,

measured along the length of the curve, from one fixed end. The energy of the WLC model is

just the bending energy due to curvature and is given by

H

kBT
=

κ

2

∫ L

0

(
∂û(s)

∂s
)2ds, (2.1)

where û(s) = ∂x̄/∂s is the tangent vector and satisfies û2 = 1. The parameter κ specifies the

stiffness of the chain and is related to the persistence length λ defined through 〈û(s).û(s′)〉 =

e−|s−s′|/λ. It can be shown that κ = (d − 1)λ/2 .

The thermodynamic properties of such a chain can be obtained from the free energy which

can be either the Helmholtz (F ) free energy or the Gibbs (G) energy. In the former case one

considers a polymer whose ends are kept at a fixed distance r [one end fixed at the origin and

the other end at ~r = (0, ...0, r)] by an average force 〈f〉 = ∂F (r, L)/∂r, while in the latter case

one fixes the force and the average extension is given by 〈r〉 = −∂G(f, L)/∂f . It can be shown

that in the thermodynamic limit L → ∞ the two ensembles are equivalent and related by the

usual Legendre transform G = F − fr. For a system with finite L/λ, the equivalence of the

two ensembles is not guaranteed, especially when fluctuations become large. We note that real

polymers come with a wide range of values of the parameter t = L/λ [e.g. λ ≈ 0.1µm for DNA

while λ ≈ 1µm for Actin and their lengths can be varied] and fluctuations in r (or f) can be very

large. Then the choice of the ensemble depends on the experimental conditions. Experiments

on stretching polymers are usually performed by fixing one end of the polymer and attaching

the other end to a bead which is then pulled by various means (magnetic, optical, mechanical,

etc.). In such experiments one can either fix the force on the bead and measure the average

7



8 Nonmonotonic Force-extension in Semi-flexible Polymer

polymer extension, or, one could constrain the bead’s position and look at the average force on

the polymer. In the former case, the Gibbs free energy is relevant while it is the Helmholtz in

the second case. This point has been carefully analyzed by Kreuzer and Payne in the context of

atomic force microscope experiments [24].

Theoretically, the constant-force ensemble is easier to treat, and infact an exact numerical

solution has been obtained [25] (though only for t >> 1). In two extreme limits of small force

and large force WLC model can be solved to obtain force extension relations. In 3D this relation in

the small force limit is 〈z〉/L = 2λf/3kBT and in the high force limit is 〈z〉/L = 1−
√

kBT/4λf .

Data on force-extension experiments on DNA [26] have been explained using this ensemble [25].

The case of constant-extension ensemble turns out to be much harder and no exact solution is

available. The t → 0 and t → ∞ cases correspond to the solvable limits of the hard rod and

the Gaussian chain. The small and large t cases have been treated analytically by perturbation

theory about these two limits [27–29]. Numerical simulations for different values of t have been

reported by Wilhelm and Frey [30], who have also obtained series expansions valid in the small t

limit. A mean-field treatment has also recently been reported [31].

In this chapter we probe the nature of the transition from the Gaussian to the rigid rod with

change of stiffness as shown by the form of the Helmholtz free energy of the WLC model (or

equivalently the distribution of end-to-end distance). Extensive simulations are performed in two

and three dimensions using the equivalence of the WLC model to a random walk with one-step

memory. We find the surprising result that, over a range of values of t, the free energy has three

minima. This is verified in a one-dimensional version of the model which is exactly solvable.

We first note that the WLC model describes a particle in d−dimensions moving with a constant

speed (set to unity) and with a random acceleration. It is thus described by the propagator

Z(~x, û, L|~x′, û′, 0) =

∫ (~x,û)

(~x′,û′)
D[~x(s)]e−H/kBT

∫

D[~x(s)]e−H/kBT
(2.2)

where in the numerator only paths ~x(s), satisfying ~x(0) = ~x′, ~x(L) = ~x, û(0) = û′ and û(L) = û

are considered. It can be shown that the corresponding probability distribution W (~x, û, L) satisfies

the following Fokker-Planck equation [27, 28]:

∂W

∂L
+ û.∇~xW − 1

2κ
∇2

ûW = 0 (2.3)

where ∇2
û is the diffusion operator on the surface of the unit sphere in d−dimensions. The

discretized version of this model is the freely rotating chain model (FRC) of semiflexible polymers

[21]. In the FRC one considers a polymer with N segments, each of length b = L/N . Successive

segments are constrained to be at a fixed angle, θ, with each other. The WLC model is obtained,

in the limit θ, b → 0, N → ∞ keeping λ = 2b/θ2 and L = Nb finite. In this chapter we report
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Figure 2.1: Monte-Carlo data for p(v, t) for the 3−dimensional WLC for values of t =
10(◦), 5, 3.33, 2 and 1(∇). The inset is a blowup of curves in the transition region (t = 4, 3.85, 3.7) and
shows the presence of the two maxima.

the simulation results of this FRC model. In the next chapter we shall see how WLC can also be

discretized to a Heisenberg spin model with nearest neighbour coupling.

Here we will consider the situation where the ends are kept at a fixed separation r [with

~x′ at the origin and ~x = ~r = (0, ...0, r)] but there is no constraint on û and û′ and they

are taken as uniformly distributed. Thus we will be interested in the distribution P (r, L) =

〈δ(~x − ~r)〉 =
∫

dûW (~r, û, L): this gives the Helmholtz free energy F (r, L) = −Log[P (r, L)].

For the spherically symmetric situation we are considering, P (r, L) is simply related to the radial

probability distribution S(r, L) through S(r, L) = Cdr
d−1P (r, L), Cd being a constant equal

to the area of the d−dimensional unit sphere. It may be noted that the WLC Hamiltonian is

equivalent to spin O(d) models in one dimension in the limit of the exchange constant J → ∞
(with Jb = κ finite) and all results can be translated into spin language. However, for spin

systems, the present free energy is not very relevant since it corresponds to putting unnatural

constraints on the magnetization vector.

2.1 Numerical Simulations

The simulations were performed by generating random configurations of the FRC model and com-

puting the distribution of end-to-end distances. To obtain equivalence with the WLC model the

appropriate limits were taken. We note that because these simulations do not require equilibra-

tion, they are much faster than simulations on equivalent spin models and give better statistics.
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Figure 2.2: Monte-Carlo data for p(v, t) for the 2−dimensional WLC for values of t =
10(◦), 5, 3.33, 2 and 1(∇). The inset is a blowup of curves in the transition region (t = 4, 3.33, 2.86)
and clearly shows the presence of the two maxima. Note that because of ±v symmetry, we have plotted
data for positive u values only. For the fits at large and small t see text.

The number of configurations generated was around 108 for chains of size N = 103. We verified

that increasing N did not change the data significantly. As a check on our numerics we evaluated

〈r2〉 and 〈r4〉. Using Eq. (2.3) and following [32] we can compute these (in all dimensions):

〈r2〉 =
4κL

d − 1
− 8κ2(1 − e−

(d−1)L
2κ )

(d − 1)2

〈r4〉 =
64κ4(d − 1)

d3(d + 1)2
e−

dL
κ − 128κ4(d + 5)2

(d − 1)4(d + 1)2
e−

(d−1)L
2κ +

64κ3L(d2 − 8d + 7)

(d − 1)4(d + 1)
e−

(d−1)L
2κ

+
64κ4(d3 + 23d2 − 7d + 1)

(d − 1)4d3
− 64κ3L(d3 + 5d2 − 7d + 1)

(d − 1)4d2
+

16κ2L2(d3 − 3d + 2)

d(d − 1)4
.(2.4)

Infact it is straightforward to compute all even moments, though it becomes increasingly tedious

to get the higher moments. Our numerics agrees with the exact results to around 0.1% for 〈r2〉
and 0.5% for 〈r4〉.

The function P has the scaling form P (r, L) = 1
Ld p(r/L, L/λ) and we will focus on determining

the function p(v, t) 1 In Fig. (2.2) and Fig. (2.1), we show the results of our simulations in two and

three dimensions. At large values of t there is a single maximum at v = r/L = 0 corresponding

to a Gaussian distribution while at small t, the maximum is close to the fully extended value of

v = ±1. The transition is first-order-like: as we decrease t, at some critical value, p develops

1Wilhelm and Frey [30] have looked at the radial distribution S(r, L) which however misses the interesting
details of the transition. We note that the relevant distribution here is indeed p(v, t) since this gives the
Helmholtz free energy
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Figure 2.3: The exact distribution p(v, t) of the 1−dimensional WLC [ Eq. (2.6)] for different
values of t (10, 5, 3.33, 2, 1). Even for the most stiff chain considered here (t = 1), the distribution has
a peak at the centre (in addition to the δ−function peaks at ends) though it looks flat.

two additional maxima at non-zero values of v. Further decreasing t weakens the maximum at

v = 0 until it finally disappears and there are just two maxima which correspond to the rigid

chain.

For the limiting cases of small and large values of t there are analytic results for the distribution

function and as can be seen in Fig. (2.2,2.1) our data agrees with them. For large t we find that

Daniels approximation [27], which is a perturbation about the Gaussian, fits the data quite well.

In the other limit of small t the series solutions provided in [30] fits our data. For intermediate

values of t neither of the two forms are able to capture, even qualitatively, the features of the

free energy. Specifically, we note that all the analytic theories(perturbative, series expansions and

mean-field) predict a second-order-like transition and do not give triple minima of the free energy

for any parameter value.

2.2 Exact Calculation in 1D

It is instructive to study the following one-dimensional version of the WLC which shows the same

qualitative features (the equivalent spin problem is the Ising model). We consider a N step

random walk, with step-size b which, with probability ε, reverses its direction of motion and with

1 − ε, continues to move in the same direction.

The appropriate scaling limit is: b → 0, ε → 0, N → ∞ keeping L = Nb, t = L/λ = 2Nε

finite. Defining Z±(x, L) as the probability of the walker to be at x with either positive or
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negative velocity, we have the following Fokker-Planck equation:

∂Z±
∂L

= ∓∂Z±
∂x

∓ 1

2λ
(Z+ − Z−) (2.5)

This can be solved for P (x, L) = Z+ + Z− = 1
L
p(x/L, L/λ). We get

p(v, t) =
te−t/2

4
[
I1(

t
2

√
1 − v2)√

1 − v2
+ I0(

t

2

√
1 − v2)]

+
e−t/2

2
[δ(v − 1) + δ(v + 1)], (2.6)

where I0 and I1 are modified Bessel functions. In Fig. 2.3 we have plotted p(v, t) for different

values of stiffness. We find that the probability distribution has three peaks for all values of

t. Unlike in 2 and 3 dimensions, the δ−function peaks at v = ±1 (which corresponds to

fully extended chains) persist at all values of stiffness though their weight decays exponentially.

Similarly the peak at v = 0 is always present.

2.3 Discussion

The most interesting result of this chapter is the triple minima seen in the Helmholtz free energy

of the WLC. Physically, this results from the competing effects of entropy, which tries to pull

in the polymer and the bending energy, which tries to extend it. This form of the free energy

leads to a highly counterintuitive force-extension curve, very different from what one obtains

from the constant force ensemble or from approximate theories. In Fig. (2.4) we show the

force-extension curve for a two dimensional chain with t = 3.33. We see that there are two

stable positions for which the force is zero. In the constant-force ensemble, it is easy to show

that ∂〈r〉/∂f = 〈r2〉 − 〈r〉2 and so the force-extension is always monotonic. However, in the

constant-extension ensemble, there is no analogous result (for finite systems), and consequently

monotonicity is not guaranteed.

Most of the recent experiments on stretching DNA have t ≥ 100. The distribution is then

sharply peaked at zero and one expects the equivalence of different ensembles. Experimentally

the value of t can be tuned by various means, for example, by changing the length of the polymer

or the temperature. Polymer-stretching experiments can thus be performed for intermediate

t values. Since we consider the tangent vectors at the polymer-ends to be unconstrained an

accurate experimental realization of our set-up would be one in which both ends are attached to

beads [see Fig. (2.5)]. The beads are put in optical traps and so are free to rotate (this setup

is identical to the one used in refn. [33]). Making the traps stiff corresponds to working in the

constant-extension ensemble [24] and one can measure the average force. Our predictions can

then be experimentally verified.
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Figure 2.4: The free energy (dotted line) and the corresponding force-extension curve (solid line)
for a 2−dimensional chain with t = 3.33.

We make some estimates on the experimental requirements (for a 3-d polymer with stiffness

t = 3.85). Assume that at one end, the origin, the trap is so stiff that the bead can only rotate.

We make measurements at the other end. The trap-center is placed at ~r0 = (0, 0, z0) and the

mean bead displacement ∆z = 〈(z − z0)〉 gives the mean force 〈f〉 on the polymer. We then

consider the problem of the polymer in the presence of a trap potential V = [kt(x
2 + y2) +

k(z − z0)
2]/2. Assume kt >> k so we can neglect fluctuations in the transverse directions.

The distribution of the bead’s position in the presence of the potential is given by Q(~r) =

e−β[F (~r)+V (~r)]/
∫

d3~re−β[F (~r)+V (~r)]. For a stiff trap, we can expand F about ~r = ~r0 and find the

average displacement of the bead.

F (~r) = F (~r0) +
∂F

∂xi
|~r0(xi − x0i

) +
1

2

∂2F

∂xi∂xj
|~r0(xi − x0i

)(xj − x0j
).

Due to spherical symmetry F (~r) = F (r). The operator identity ∂
∂xi

= ∂
∂r

∂r
∂xi

= xi

r
∂
∂r

leads to
∂F
∂xi

= xi

r
∂F
∂r

and

∂2F

∂xi∂xj
=

1

r

∂F

∂r
δij +

xixj

r2

(

∂2F

∂r2
− 1

r

∂F

∂r

)

At the point of measurement, ~r0 = (0, 0, z0),
∂F
∂x

= ∂F
∂y

= 0, ∂F
∂z

= F ′
0,

∂2F
∂xi∂xj

= 0 for i 6= j,
∂2F
∂x2 = ∂2F

∂y2 = F ′
0/z0 ≡ G0 and ∂2F

∂x2 = F ′′
0 . Therefore,

F (~r) + V (~r) = F0 + F ′
0(z − z0) +

1

2
(G0 + kt)(x

2 + y2) +
1

2
(F ′′

0 + k)(z − z0)
2
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Figure 2.5: A schematic of the experimental set-up required to realize the constant-extension
ensemble discussed in this chapter. For a stiff trap the average displacement of the bead 〈∆z〉 from
the trap center is small and the average force on the polymer is: 〈f〉 = −k〈∆z〉.

writing F (r0) = F0. Then the average displacement can be written as,

∆z =

∫

d3~r(z − z0)e
−β(F+V )

∫

d3~re−β(F+V )

=

∫

dz(z − z0)e
−β 1

2
k′(z−z0+F ′

0/k′)2

∫

dze−β 1
2
k′(z−z0+F ′

0/k′)2
= −F ′

0

k′

where k′ = k + F ′′(z0). In short, we have shown that ∆z =
∫

d3~r(z − z0)Q(~r) = −〈f〉/k′,

where k′ = k + F ′′(z0) ≈ k (valid except when z0 ≈ L) and 〈f〉 = F ′
0 = F ′(z0). The

rms fluctuation of the bead about the trap center is given by z2
rms = kBT/k. Hence we get

∆z = −〈f〉z2
rms/(kBT ) = −(〈f〉L/kBT )(z2

rms/L). The scaled force 〈f〉L/(kBT ) is of order

0.1. The different minima are separated by distances ≈ 0.2L, hence to see the effect we need to

have zrms/L ≤ 0.1. Thus finally we find that the typical displacement of the bead ∆z is about

0.01zrms. This is quite small and means that it is necessary to collect data on the bead position

over long periods of time.

As suggested in [30], a more direct way of measuring the Helmholtz free energy would be to

attach marker molecules at the ends of the polymer and determine the distribution of end-to-end

distances. Fluorescence microscopy as in [15] could be another possible method. It is to be

remembered of course that real polymers are well-modeled by the WLC model provided we can

neglect monomer-monomer interactions (steric, electrolytic etc.). Thus the experiments would

really test the relevance of the WLC model in describing real semiflexible polymers in different

stiffness regimes.
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2.4 Conclusion

In conclusion we have presented some new and interesting properties of the WLC model and have

pointed out that polymer properties are ensemble-dependent. This is a finite size effect. In this

chapter we have given one example of qualitative differences in force-extension measurements in

different ensembles. Other quantitative differences will occur even in more flexible chains and

should be easier to observe experimentally. If the ends of the polymer are free to rotate but

the end to end separation is constrained to be at a constant distance, such that the system is in

constant extension ensemble, then the free energy of the polymer is shown to have a triple minima

structure for some intermediate values of stiffness. In the next chapter we shall investigate the

robustness of this triple minima structure as some fixed orientations.
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3 Semiflexibile Polymer: Ensemble and End- Orientation

The children would remember for the rest of their lives the august solemnity

with which their father, devastated by his prolonged vigil and by the wrath of

his imagination, revealed his discovery to them: “The earth is round like an

orange”. – G. G. Márquez

In the last chapter we have studied the statistical and mechanical properties of a semiflexible finite

polymer with its ends left free to rotate. The bending rigidity coupled with the finite size of the

polymer gave rise to inequivalence of ensemble and a very interesting triple minima in free energy

in the Helmholtz ensemble and consequently non- monotonic force extension which is absent in

Gibbs ensemble. In this chapter, we shall discuss an exact theory that gives results which match

exactly with the simulations. Further, we shall go over to different boundary conditions by fixing

the orientations at the ends of a polymer and study its impact, which is very non- trivial, on the

end to end probability distributions and mechanical properties.

Microtubules and actin polymers constitute the structure of cytoskeleton that gives shape,

strength and motility to most of the living cells. They are semiflexible polymers in the sense that

their persistence lengths λ are of the order of their chain lengths L such that t = L/λ is small and

finite. For example, Actin has λ = 16.7 µm, L ∼ 30 µm[15, 16], Microtubule has λ = 5.2 mm

and statistical contour length L ∼ 10 µm[16], double stranded DNA has λ = 50 nm and contour

length L ∼ 300 nm[18]. While it is obvious that in the thermodynamic limit of t → ∞, Gibbs

(constant force) and Helmholtz (constant extension) ensemble predict identical properties, the

same is not true for real semi- flexible polymers which are far away from this limit. In biological

cells actin filaments remain dispersed throughout the cytoplasm with higher concentration in the

cortex region, just beneath the plasma membrane. Microtubules, on the other hand, have one

end attached to a microtubule- organizing centre, centrosome in animal cells. Another polymer,

microtubule- associated proteins (MAP) attach one or both their ends to microtubules to arrange

them in microtubule bundles [17]. Thus, end point orientation of polymers play a crucial role

in many important phenomena. For instance, gene- regulation in the cell is controlled by DNA-

binding proteins, many of which loop DNA with fixed end orientations [34–36]. Thus it becomes

important to understand the statistics and the mechanical properties of semi- flexible polymers

with different possibilities of end orientations and ensembles.

17
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Figure 3.1: Three possible experimental set- up for force- extension measurements. (a) left and
right ends are held by optical traps, (b) left end is anchored to a surface and the right end is held by
optical trap, (c) left end is anchored to a surface and the right end is held by the functionalized tip
of an AFM cantilever. z0 denote the position of the free dielectric bead (for optical trap) or the free
cantilever tip in absence of the polymer, ∆z denote the displacement associated with the force exerted
by the polymer.

During the last decade many single molecule experiments have been performed on semi- flexible

polymers[18, 19, 26, 37]. This has been done by using optical tweezers[37], magnetic tweezers[38],

AFMs[39] etc. In optical tweezer experiments one end of a polymer is attached to a dielectric

bead which is, in turn, trapped by the light intensity profile of a laser tweezer. In this case the

dielectric bead is free to rotate within the optical trap. On the other hand, attaching an end of a

polymer to a super-paramagnetic bead, one can use magnetic field gradients to trap the polymer

using a magnetic tweezer setup. In this case one can rotate the bead while holding it fixed in

position by changing the direction of the external magnetic field. In AFM experiments on the

other hand one end of polymer is trapped by a functionalized tip of an AFM cantilever. In Fig.3.1

we have shown cartoons of three possible experimental setups. The two distinct procedures which

can be followed to measure force- extension are: (a) Both the ends of the polymer are held via

laser or magnetic tweezers. (b) One end of the polymer is attached to a substrate such that the

position and orientation of this end is fixed while the other end is trapped via laser tweezer or

magnetic tweezer or AFM cantilever.

While optical tweezers allow free rotation of dielectric beads within the trap thereby allowing

free orientations of the polymer end, magnetic tweezers fix the orientation of the ends and one

can study the dependence of polymer properties on orientation of its ends by controlled change

of the direction of external magnetic field . In this chapter, we call this fixing of orientation of

an end of a polymer as grafting. By changing the trapping potential from stiff to soft trap one

can go from Helmholtz to Gibbs ensemble[40]. Before we proceed, let us first elaborate on how

to fix the ensemble of a mechanical measurement. In a simplest case we can assume that one
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end of the polymer is trapped in a harmonic well,

βV (z) = C
(z − z0)

2

2
(3.1)

with (0, 0, z0) being the position of potential- minimum. The polymer end will undergo continuous

thermal motion. One can use a feedback circuit to shift z0 to force back the fluctuating polymer

end to its original position. This will ensure a Helmholtz ensemble. This can also be achieved by

taking C → ∞. On the other hand one can use a feedback circuit to fix the force −C(z− z0) by

varying C depending on the position z of the polymer end. This will ensure a Gibbs ensemble.

This can also be achieved by taking a vanishingly soft (C → 0) trap to infinitely large distance

(z0 → ∞) such that within the length scale of fluctuation the polymer end feels a constant slope

of the parabolic potential. Surely, in experiments, using a feedback circuit is easier to implement

a particular ensemble. However, the other procedure is mathematically well defined and one can

seek recourse of it to show that the partition function of two ensembles are related by a Laplace

transform [41]. This does not depend on the choice of Hamiltonian for the polymer. An exact

relation between the two ensembles for worm like chain (WLC) model is shown in Sec.3.1.

From the above discussion on possible experiments, it is clear that there can be three possibili-

ties of boundary conditions in terms of orientation. In an experiment the possibilities are, (a) free

end: both the ends of a polymer can remain free to rotate[41, 42], (b) one end grafted: one end

may be grafted and the other can take all possible orientations[43] and (c) both ends grafted:

the orientations of both the ends are kept fixed. Thus, in experiments, we can have two possible

ensembles and three possible boundary conditions. We investigate the probabilitiy distribution,

free energy profile and force extension relation for each of these cases in this chapter. We shall

see that the properties of a semiflexible polymer depend both on the choice of the ensemble and

the boundary condition.

WLC model is a simple coarse grained way to capture bending rigidity of an unstretchable

polymer [21, 44] embedded in a thermal environment. Recent single molecule experiments in

biological physics [18, 19, 26, 37] renewed interest in this old model of polymer physics. It was

successfully employed by Bustamante, Marko, Siggia and Smith [25, 45] to model data from

force- extension experiment [26] on double stranded DNA molecules. Mechanical properties

of giant muscle protein titin [46, 47], polysaccharide dextrane [39, 47] and single molecule of

xanthane [48] were also explained using WLC model. Due to the inextensibility constraint WLC

model is hard to tract analytically except for in the two limits of flexible chain (t → ∞) and rigid

rod (t → 0), about which perturbative calculations have been done [27–29]. A key quantity that

describes statistical property of such polymers is the end-to-end distance distribution. Numerical

simulations for different values of t have been reported by Wilhelm and Frey [30], who have also

obtained series expansions valid in the small t limit. Mean-field treatments by Thirumalai and

his collaborators has also been reported [31, 49]. In an earlier study[42] we have investigated
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the free energy profile of a semiflexible polymer whose ends were free to rotate in the constant

extension ensemble and in the stiffness regime of 1 ≤ t ≤ 10. This has been predicted that

a clear qualitative signature of semi- flexibility would be a non- monotonic force extension for

stiffnesses around t = 4 in Helmholtz (constant end to end separation) ensemble. This comes

from bimodality of probability distribution of end to end separation. This non- monotonicity

must be absent in Gibbs (constant force) ensemble[42]. Multiple maxima in the probability

distribution of end to end separation was due to a competition between entropy, that prefers a

maximum near zero separation, and energy, that likes an extended polymer. A lot of theoretical

works followed to reproduce and understand the probability density at all stiffnesses including

the very interesting bimodality using analytic techniques [41, 50–52]. Recently, Frey and his

collaborators studied the interesting multimodality in transverse fluctuations of a grafted polymer

using simulations [43] and approximate theory [53, 54]. In a separate study Spakowitz and Wang

used Greens function technique that takes into account the orientations of the polymer ends [55].

WLC model has been extended to study double stranded to single stranded DNA transition [56]

and to incorporate twist degree of freedom [57–59].

The construction of this chapter is as follows. In Sec.3.1 we present a path integral technique

for exact calculation of WLC model for all the three boundary conditions and two ensembles. Then

in Sec.3.2 we discuss the different discretized versions of WLC model and the Monte- Carlo (MC)

simulation procedures followed in this work. In Sec.4.2 we present all the results obtained from

theory and simulations. In this section we present statisticl and mechanical properties for all

the possible situations. Then we summarise our results and conclude with some discussions in

Sec.5.7.

3.1 Theory

In WLC model the polymer is taken as a continuous curve denoted by a d- dimensional vector

~r(s) where s is a distance measured over the contour of the curve from any end of it. This curve

has a bending rigidity and thus the Hamiltonian is given by

βH =

∫ L

0

ds
κ

2

(

∂t̂(s)

∂s

)2

, (3.2)

where t̂(s) = ∂~r(s)/∂s is the tangent vector and the polymer is inextendible i.e. t̂2 = 1, β is the

inverse temperature. The bending rigidity κ is related to persistence length λ via κ = (d−1)λ/2.

Persistence length is a measure of the distance up to which the consecutive tangent vectors on

the contour do not bend appreciably and is defined by 〈t̂(s).t̂(0)〉 = exp(−s/λ).

In this section we present a theoretical method to solve WLC model to any desired accuracy

for both the Helmholtz and Gibbs ensemble and all three possible boundary orientations over



3.1 Theory 21

the entire range of stiffness parameter t. We first develop the method for a free polymer. Then

we extend it to calculate properties of grafted [ one/both end(s) ] polymers.

If the tangent vectors of two ends of a polymer are held fixed at t̂i and t̂f , the probability

distribution of end to end vector in constant extension ensemble can be written in path integral

notation as

P (~r) = N
∫ t̂f

t̂i

D[t̂(s)] exp (−βH) × δd

(

~r −
∫ L

0

t̂ds

)

(3.3)

where βH is given by Eq.3.2 and D[t̂(s)] denotes integration over all possible paths in tangent

vector space from tangent at one end t̂i to tangent vector at the other end t̂f . In d- dimensions

~r = (r1, r2, . . . , rd). There is no eaxct analytic calculation of this distribution because of the

difficulty presented by the inextensibility constraint introduced via the Dirac- delta function,

though some mean field way of enforcing this constraint exist[31, 49]. Unfortunately that do

not capture the very interesting triple maxima feature of the radial distribution at intermediate

stiffness values as obtained in Ref.[42]. Recently, following our earlier work[42], J. Samuel et.

al. [41] developed a path integral Greens function formulation to evaluate the distribution for a

free polymer in 3D. We closely follow that method to generalize that to obtain results for various

orientation constraints on polymer ends.

The integrated (projected) probability distribution is given by,

Px(x) =

∫

d~rP (~r)δ(r1 − x). (3.4)

We define the generating function of Px(x) via Laplace transform as,

P̃ (f) =

∫ L

−L

dx exp(Fx/kBT )Px(x)

=

∫ L

−L

dx exp(fx/λ)Px(x) (3.5)

where f is the force in units of kBT/λ i.e. f = Fλ/kBT applied along the x- axis. This gives,

P̃ (f) = N
∫ t̂f

t̂i

D[t̂(s)]e

„

− (d−1)λ
4

R L
0 ds

“

∂t̂(s)
∂s

”2
+ f

λ

R L
0 t̂xds

«

= N
∫ t̂f

t̂i

D[t̂(τ ′)]e

»

−
R t
0



(d−1)
4

“

∂t̂(τ ′)

∂τ ′

”2
−f t̂x

ff

dτ ′

–

(3.6)

The last step is obtained by replacing τ ′ = s/λ, t = L/λ and using the identity κ = (d− 1)λ/2.

Note that, P̃ (f), is the partition function in constant force ensemble where t behaves like an



22 Semiflexibile Polymer: Ensemble and End- Orientation

inverse temperature such that the Gibb’s free energy can be written as G(f) = −1/t ln P̃ (f).

Now considering τ ′ as imaginary time and replacing τ = −iτ ′ we get,

P̃ (f) = N
∫ t̂f

t̂i

D[t̂(τ)]e

»

i
R

−it

0



(d−1)
4

“

∂t̂(τ)
∂τ

”2
+f t̂x

ff

dτ

–

= N
∫ t̂f

t̂i

D[t̂(τ)]e[i
R

−it

0
Ldτ] (3.7)

With the identification of L = (d−1)
4

(

∂t̂(τ)
∂τ

)2

+ f t̂x as the Lagrangian, P̃ (f) [ = Z̃(f)/Z̃(0) ] in

the above expression is the path integral representation for the propagator of a quantum particle,

on the surface of a d- dimensional sphere, that takes a state |t̂i〉 to |t̂f 〉. In Schrödinger picture

this can be written as the inner product of a state |t̂i〉 and another state |t̂f〉 evolved by imaginary

time −it,

Z̃(f) = 〈t̂i| exp(−iĤ(−it))|t̂f 〉 = 〈t̂i| exp(−tĤ)|t̂f〉. (3.8)

Once P̃ (f) = Z̃(f)/Z̃(0) is calculated, performing an inverse Laplace transform we can obtain

the projected probability density Px(x). We now describe how to do that. Eq.3.5 can be written

as,

P̃ (f) =

∫ L

−L

dx exp(fx/λ)Px(x)

=

∫ 1

−1

dvx exp(tf vx)LPx(x)

=

∫ 1

−1

dvx exp(tf vx)px(vx) (3.9)

where vx = x/L and px(vx) = LPx(x) is a scaling relation. Note that the Helmholtz free energy

is given by Fx(vx) = −(1/t) ln px(vx). Therefore, we can write the above expression as,

exp[−tG(f)] =

∫ 1

−1

dvx exp(tf vx) exp[−tFx(vx)].

This is the relation between free energies of Helmholtz and Gibbs ensemble for a finite chain

(finite t). In thermodynamic limit of t → ∞ a steepest descent approximation of the above

integral relation gives G(f) = Fx(vx) − fvx, the normal Legendre transformation. Let us use

the identity,

px(vx) =
1

2π

∫ ∞

−∞
eiuvxdu

∫ 1

−1

px(w)e−iuwdw (3.10)

In it we can define p̃x(u) =
∫ 1

−1
px(w) exp(−iuw)dw as the Fourier transform and

px(vx) =
1

2π

∫ ∞

−∞
dup̃x(u) exp(iuvx) (3.11)
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Figure 3.2: For a semiflexible polymer having its ends free to rotate px(vx) ( = py(vy) ) is plotted
at stiffness parameter t = 2. The points are collected from Monte- Carlo simulation in freely rotating
chain model (see Sec.3.2). The line is calculated from theory (see Sec.3.1). The theory matches exactly
with simulation. It clearly shows bistability via two maxima in integrated probability density at the two
near complete extensions.

as the inverse Fourier transform. Now, with −iu = tf we get P̃ (f) = p̃x(u = ift) and the

inverse Fourier transform can be written as an inverse Laplace transform,

px(vx) = t
1

2πi

∫ i∞

−i∞
dfP̃ (f) exp(−tfvx) (3.12)

This gives the relation between the partition function P̃ (f) in the constant force ensemble and

the projected probability density of end to end separation px(vx) along any given direction x in

the constant extension ensemble. In numerical evaluation, the simplest way to obtain px(vx) is

to replace f = −iu/t in the expression for Z̃(f) to obtain p̃x(u) and evaluate the inverse Fourier

transform (Eq.3.11).

Up to this point everything has been treated in d- dimensions. Experiments on single polymer

can be performed in 3D as well as in 2D. In 3D polymers are left in a solution whereas one

can float the polymer on a liquid film to measure its properties in 2D [16]. Moreover, polymers

embedded in 2D are more interesting because of the following reason. It was shown that in

Helmholtz ensemble in three dimensions[41],

p(vx) = − 1

2πvx

dpx

dvx
(3.13)

where p(vx) is the scaled radial distribution function L2P (r) = p(v) with v replaced by vx.

Since p(v) is a probability density p(v) ≥ 0 and therefore dpx/dvx ≤ 0 for vx > 0 thus ruling
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out multiple peaks in px(vx) [40] and showing that px(vx) will have single maximum at vx = 0

for all stiffness parameter t. No such simple relation exists between p(vx) and px(vx) in two

dimensions. Therefore, the two dimensional WLC polymer having its ends free to rotate may

show more than one maximum in px(vx) and therefore non-monotonicity. Indeed our calculation

and simulation (see Sec.3.2) does show non-monotonicity (Fig.3.2). This is a curious difference

between semiflexible polymers in 2D and 3D. Because of this and the fact that experiments in

2D are possible, in this work we focus on the 2D WLC model.

We have already given a general form of Z̃(f) (Eq.3.8) which depends on the dimensionality

d of the embedding space of the polymer. d = 3 formulation of this theory for a polymer with

its ends free to rotate has been carried out in detail in Ref.[41]. For d = 2, we can assume

t̂ = (cos θ, sin θ). Therefore, L = {1/4 θ̇2 + fcosθ} and angular momentum pθ = ∂L
∂θ̇

= θ̇/2.

Then the corresponding Hamiltonian is H = θ̇pθ−L = p2
θ−fcosθ and in planar polar coordinates,

replacing pθ → −i ∂
∂θ

we obtain the quantum hamiltonian operator, Ĥ = − ∂2

∂θ2 − fcosθ. In this

representation of t̂ we can write,

Z̃(f) = 〈θi| exp(−tĤ)|θf 〉
=

∑

n,n′

〈θi|n〉〈n| exp(−tĤ)|n′〉〈n′|θf 〉

=
∑

n,n′

φ∗
n(θi)φn′(θf )〈n| exp(−tĤ)|n′〉 (3.14)

This propagator takes a definite tangent vector state |θi〉 at one end of the polymer to a definite

final tangent vector state |θf 〉 at the other end of it.

If external force is applied along x- direction as in Eq.3.5, Ĥ = Ĥ0 + ĤI = − ∂2

∂θ2 − fcosθ

where Ĥ0 = − ∂2

∂θ2 is the Hamiltonian for a free rigid rotor in 2D and ĤI = −f cos θ is the part

of Hamiltonian introduced by an external field. Thus the total Hamiltonian Ĥ denotes a rigid

rotor in presence of a constant external field. The eigenvalues of Ĥ0, the hamiltonian for a 2D

rigid rotor, are En = n2 and the complete set of ortho- normalized eigen- functions are given

by φn(θ) = exp(inθ)/
√

2π where n = 0,±1,±2, . . . . The orthonormality condition is 〈n|n′〉 =

(1/2π)
∫ 2π

0
dθ exp[i(n − n′)θ] = δn,n′. In this basis 〈n|ĤI |n′〉 = −(f/2)(δn′,n+1 + δn′,n−1).

Therefore, 〈n|Ĥ|n′〉 = n2δn′,n − (f/2)(δn′,n+1 + δn′,n−1). If the external force were applied in y-

direction ĤI = −f sin θ and 〈n|Ĥ|n′〉 = n2δn′,n − (f/2i)(δn′,n+1 − δn′,n−1). 〈n| exp(−tĤ)|n′〉
can be calculated by exponentiating the matrix 〈n|Ĥ|n′〉. Thus one can find Z̃(f).

3.1.1 Free Polymer

For a polymer which has both its ends free to rotate, integrating Eq.3.14 over all possible initial

and final tangent vectors in rigid rotor basis we get

Z̃(f) = 2π 〈0| exp(−tĤ)|0〉 (3.15)
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This means that Z̃(f) is given by the (0, 0) element of the matrix 〈n| exp(−tĤ)|n′〉. In this

case Z̃(0) = 2π 〈0| exp(−tH0)|0〉 = 2π exp(−t 02) = 2π and therefore P̃ (f) = Z̃(f)/Z̃(0) =

〈0| exp(−tĤ)|0〉. To evaluate the matrix element 〈0| exp(−tĤ)|0〉 we exponentiate the matrix

−t〈n|Ĥ|n′〉 and pick up the (0, 0)-th element. Thus, if the external force is applied in x- direction,

remembering p̃x(u) = P̃ (f = −iu/t) we calculate the inverse Fourier transform (Eq.3.11) to

obtain px(vx). Here it is useful to note that due to spherical symmetry of a polymer whose ends

are free to rotate px(vx) = py(vy).

3.1.2 One End Grafted

This symmetry breaks down immediately if we hold one end of the polymer to a specific direction,

namely along the x- direction i.e. θi = 0. Then on Eq.(3.14) integrating over all possible θf and

leaving θi = 0 we obtain

Z̃(f) =
∑

n

〈n| exp(−tĤ)|0〉 (3.16)

in the rigid- rotor basis. Note for this case Z̃(0) =
∑

n〈n| exp(−tH0)|0〉 =
∑

n exp(−tn2)δn,0 =

1 and therefore we have P̃ (f) = Z̃(f). If the external force acts in x- direction, the Laplace

transform of Z̃(f), defined in the way described above, gives the projected probability distribu-

tion in x- direction, px(vx). On the other hand, if the external force acts in y- direction, the

Laplace transform of Z̃(f) gives the projected probability distribution in y- direction py(vy), the

distribution of transverse fluctuation while one end of the polymer is grafted in x- direction.

3.1.3 Both Ends Grafted

Two ends of a polymer can be grafted in infinitely different ways. Let us fix the orientation of

one end along x- direction (θi = 0) and the other end is orientated along any direction θf , then

Eq.(3.14) gives

Z̃(f) =
1

2π

∑

n,n′

ein′θf 〈n| exp(−tĤ)|n′〉. (3.17)

As above, to obtain px(vx) we use 〈n|ĤI|n′〉 = −(f/2)(δn′,n+1 + δn′,n−1), whereas to obtain

py(vy) we use 〈n|ĤI|n′〉 = −(f/2i)(δn′,n+1 − δn′,n−1) to calculate P̃ (f) and perform inverse

Laplace transform. For this case of grafting 2πZ̃(0) =
∑

n,n′ ein′θf 〈n|e−tH0 |n′〉 =
∑

n einθf−tn2

and therefore P̃ (f) =
∑

n,n′ ein′θf 〈n|e−tĤ |n′〉/[
∑

n einθf−tn2
].

Up to this point all the relations are exact. Since an infinite dimensional calculation of

〈n| exp(−tĤ)|n′〉 is not feasible, we calculate it numerically up to a dimension Nd, that controls

the accuracy, limited only by computational power 1. We use Nd = 10 which already gives

1We use the MatrixExp function of Mathematica[60].
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numbers for probability distribution which differs within 1% from that obtained from Nd = 20

and gives a fair comparison with simulated data (see Sec.4.2). The inverse Laplace transform to

obtain px(vx) etc. from P̃ (f) is also done numerically.

3.2 Simulation

In this section, we introduce two discretized models used to simulate semi- flexible polymers.

Both of these are derived from the WLC model which is used for our analytical treatment in

Sec.3.1. After introducing the discretized models we have listed the various boundary conditions

used. We perform Monte- Carlo (MC) simulations to obtain probability distributions in Helmholtz

ensemble.

One discretized version of this model is the freely rotating chain (FRC) model[21]. In the FRC

model one considers a polymer as a random walk of N steps each of length b = L/N with one

step memory, such that, successive steps are constrained to be at an fixed angle θ with λ = 2b/θ2.

The continuum WLC model is obtained in the limit θ, b → 0, N → ∞ keeping λ and L finite.

To simulate a polymer with ends free to rotate a large number of configurations are generated

with first step taken in any random direction. Whereas if one choses the first step to be in some

specific direction, this will simulate a polymer with one end grafted in that direction.

A straight discretization of Eq.3.2 in 3D (2D) is an 1d Heisenberg (classical xy) model:

βH =
κ

2

N
∑

i=1

(t̂i − t̂i−1)
2

b
=

N
∑

i=1

(−J t̂i.t̂i−1) (3.18)

with a nearest neighbour coupling J = κ/b between ‘spins’ t̂i. We have ignored a constant term

in energy. The appropriate continuum limit is recovered for b → 0, J → ∞ with Jb = κ finite.

In this model grafting is simulated by fixing end spins on the 1D chain. If an end is free then the

end spin takes up any orientation that are allowed by the energy and entropy. In this model, by

fixing the two end- spins, one can easily simulate a polymer with both its ends grafted in some

fixed orientations. We follow the normal Metropolis algorithm to perform MC simulation in this

model.

We restrict ourselves to two dimensions. The numerics were checked via exact calculation

of 〈r2〉 and 〈r4〉 which match within 0.5%. In the FRC model simulations we have used a

chain length of N = 103 and generated around 108 configurations. This simulation does not

require equilibration run. Therefore all the 108 configurations were used for data collection. In

xy model we have simulated N = 50 spins and equilibrated over 106 MC steps. A further 106

configurations were generated to collect data. We have averaged over 103 initial configurations,

each of which were randomly chosen from nearly minimum energy configurations that conforms

with the boundary conditions. Increasing the number of spins do not change the averaged data.
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Figure 3.3: Compare this force- extension relation with that in Fig.2.4 of previous chapter. None of
the curves including that at t = 3.33 show non- monotonic behaviour. This shows the force- extension
behaviour in constant force ensemble. Forces are expressed in units of kBT/λ.

3.3 Results

Once all these theoretical and simulation tools are available, we apply them to bring out statistical

and mechanical properties of a semiflexible polymer. We have three different boundary conditions

depending on the orientations of polymer ends and two different ensembles. For each case we

look at the various probability densities, ensemble dependence of force- extension etc. For the

case of a polymer with both ends grafted we find that the properties depend on the relative

orientation of the two ends.

3.3.1 Free Polymer:

Helmholtz ensemble: We employ the theory as described in Sec.3.1 to calculate px(vx) and

py(vy) for a polymer with both its ends free to rotate. We compare the probability distribution

obtained at stiffness parameter t = 2 with that obtained from MC simulation (Sec.3.2) using

the FRC model (see Fig.3.2). This shows exact agreement between theory and simulation.

For a free polymer px(vx) and py(vy) are same due to the spherical symmetry. Note that,

F(vx) = −1/t ln px(vx) would give a non- monotonic force- extension via 〈fx〉 = (∂F/∂vx).

The force- extension obtained from the projected probability density px(vx) will describe the

experimental scenario in which the external potential traps the polymer end only in x- direction

and constant in y. In general, if the external potential traps the polymer in dr dimensions (dr ≤ d)

then a dr dimensional projection ( (d−dr) dimensional integration ) of the probability distribution
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Figure 3.4: The simulation data for px(vx) and py(vy) from FRC model and XY- model simulations
are compared with their theoretical estimates. Simulations and calculations were done at t = 2 for a
polymer with one end grafted in x- direction. The data labelled LMF is taken from Ref.[43].

of end to end vector p(~v) gives the free energy and decides the force- extension relation. This

understanding is general and do not depend on the orientational boundary conditions at the

polymer ends or the dimensionality of embedding space. This is important to keep in mind while

analyzing experimental data.

Gibbs ensemble: We have already mentioned that the non- monotonic nature of free energy,

a strong qulitative signature of semi- flexibility, is observable only in Helmholtz ensemble not

in Gibbs ensemble [42]. The partition function in Gibbs ensemble with force f applied in x-

direction gives the Gibb’s free energy G(f) = −(1/t) ln[P̃ (f)]. From this the averaged extension

comes out to be 〈vx〉 = −(∂G/∂f). For a polymer with its ends free to rotate, this force

extension relations, that have been calculated from theory, at various t are shown in Fig.3.3.

Notice that ∂〈vx〉/∂f = t[〈v2
x〉−〈vx〉2] ≥ 0. Similar relation for response function does not exist

in Helmholtz ensemble. Therefore, the force- extension in Gibbs ensemble has to be monotonic

(Fig.3.3) in contrast to Helmholtz ensemble. Note that, for any non-zero stiffness, negative

force is required to bring the end to end separation to zero. The amount of this force is larger

for larger stiffness (smaller t). At large and positive force polymer goes to fully extended limit

whichafter inextensibility constraint stops the polymer to extend any more.

3.3.2 Grafted Polymer: One End

Helmholtz ensemble: Next, we use our thery to plot px(vx) and py(vy) at t = 2 (Fig.3.4) for a

semiflexible polymer with one end grafted in x- direction. In Fig.3.4 we have also plotted MC
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Figure 3.5: The integrated probability density py(vy) is plotted at various stiffnesses t. At t = 4
there is a single maximum at vy = 0. Decreasing t we see at t = 2.8 emergence of two more peaks
at nonzero vy except for the one at vy = 0 (See inset). At t = 2 central peak vanishes, the trimodal
distribution becomes bimodal. The circles labeled LMF are data taken from Ref.[43] at t = 2 to show
exact agreement with our theory. At t = 0.75 we see re-emergence of the central peak and tri-modality
in py(vy) (See inset, ♦s are from our MC simulation in the FRC model at t = 0.75, the lines are
calculated from theory).

data from the FRC model and xy model simulation. The exact match validates our theory and

both the simulation techniques. In px(vx) the peak in near complete extension along positive x is

due to the large bending energy and orientation of the other end towards this direction (also see

p(vx, vy) in Fig.3.13). We then explore the transverse fluctuation py(vy) of this system, in detail,

for different t (Fig.3.5). At large t(= 10), py(vy) has single maximum at vy = 0. At such low

stiffnesses entropy takes over energy contributions. Number of possible configurations and thus

entropy gains if end to end separation remains close to zero. This gives rise to this single central

maximum. The emergence of multiple maxima at nonzero vy in polymers, the multi- stability,

with larger stiffness (t = 2.8) is due to the entropy- energy competition. The central peak is

due to the entropy driven Gaussian behavior. The other two peaks emerge as entropy tries the

polymer to bend around vy = 0 and energy restricts the amount of bending. Since bending in

positive and negative y- directions are equally likely, the transverse fluctuation shows two more

maxima at non- zero vy. With further increase in stiffness (t = 2), the central Gaussian peak

vanishes (see Fig.3.13) and therefore py(vy) becomes bistable with two maxima (Fig.3.5). At

even higher stiffness (t = 0.75) central peak reappears, this time due to higher bending energy.

At t = 0.5 the distribution again becomes single peaked at vy = 0 as entropy almost completely
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Figure 3.6: The left panel shows the Helmholtz free energies F(vx) and F(vy) of a polymer with
t = 2 and one end grafted in x- direction. The right panel shows the corresponding force- extensions
in Helmholtz ensemble. Both 〈fx〉- vx and 〈fy〉- vy show regions of negative slope. Free energies are
expressed in units of kBT and forces are expressed in units of kBT/λ.

loses out. This is the rigid rod limit. Notice that we have plotted MC data as obtained in Ref.[43]

for xy model simulation at t = 2. This agrees exactly with our theory. In the inset of Fig.3.5 we

have blown up the multistability at t = 2.8 and t = 0.75. We have also plotted our FRC model

simulation data at t = 0.75 for comparison.

At this point it is instructive to look at the force extension behavior in Helmholtz ensemble,

the ensemble in which py(vy) and px(vx) have been calculated above. In it the extension vx [ or

vy ] is held constant and the corresponding average force in x- [ or y- ] direction is found from

the relation 〈fx〉 = ∂F(vx)/∂vx ( or 〈fy〉 = ∂F(vy)/∂vy ). In Fig.3.6 we show the Helmholtz

free energies F(vx) = −(1/t) ln px(vx) and F(vy) = −(1/t) ln py(vy) and the corresponding

force extension curves in constant extension ensemble. Note that unlike the monotonicity beared

by 〈vy〉-fy curve (Fig.3.7) obtained in Gibbs ensemble the 〈fy〉-vy curve in Fig.3.6 clearly shows

non-monotonicity, a signature of the Helmholtz ensemble.

Gibbs ensemble: From our theory we can also explore the transverse response of a polymer

which has one of its ends grafted to a substrate and a constant force is applied to the other

end in a direction transverse to the grafting. Assume that the grafting direction is x and we

apply a force fy in y- direction to study the response. A linear response theory was proposd

earlier[53] to tackle this qustion. Our theory can predict the effect of externally applied force

fy of arbitrary magnitude on the average positions 〈vx〉 and 〈vy〉. As the force is applied in

y-direction i.e. ~f = ŷfy, we have HI = −fy sin θ. Because one end of the polymer is grafted

in x- direction we use 〈n|ĤI |n′〉 = −(fy/2i)(δn′,n+1 − δn′,n−1) to evaluate Z̃(fy), whereas to

calculate 〈vx〉 = −(∂G/∂fx) [ or, 〈vy〉 = −(∂G/∂fy) ] we introduce a small perturbing force

δfx ( or, δfy ) in the Hamiltonian matrix to obtain the partial derivatives. Thus we obtain the

corresponding force- extensions shown in Fig.3.7. As the grafted end is oriented in x- direction
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Figure 3.7: Average displacements along x- direction 〈vx〉 and y- direction 〈vy〉 as a function
of transverse force (transverse to grafting direction) in constant force ensemble. Lines denote our
theoretical calculation while points denote the MC simulation data taken from Ref.[43]. Forces (Fy)
are expressed in units of kBT/λ, i.e. fy = Fyλ/kBT .

we expect in absence of any external force 〈vx〉 will be maximum and will keep on reducing due

to the bending of the other end generated by the external force imposed in y- direction. Thus

〈vx〉 is expected to be independent of the sign of fy. Similarly 〈vy〉 should follow the direction

of external force and therefore is expected to carry the same sign as fy. Fig.3.7 verifies these

expectations and shows the comparison of our theory with simulated data taken from Ref.[43].
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Figure 3.8: The simulation data for px(vx) and py(vy) from XY- model simulations of a WLC
polymer are compared with their theoretical estimates. Simulations and calculations were done at t = 2
for a WLC polymer with both its ends grafted in x- direction.

3.3.3 Grafted Polymer: Both Ends

Helmholtz ensemble: Let us first fix the orientations of the polymer at both its ends along x- axis

and compare px(vx) and py(vy) obtained from our xy model simulation and our theory (Fig.3.8).

This validates both our theory and simulation. Next, we go on to explore the properties of this

system using our theory. We take a polymer with both its ends grafted, orientation of first end

is fixed in x- dirction (θi = 0) and that in the other end (θf ) is varied to study the change in

transverse fluctuation py(vy). To begin with let us find py(vy) for different stiffnesses t with

θf = 0 (Fig.3.9). The height of central peak shows non- monotonicity; with increase in t from

t = 1 the height of central peak first decreases up to t = 2 and then eventually again increases.

The initial decrease in the height of the maximum is due to the fact that with increase in t the

other end of the polymer (relative to the first end) starts to sweep larger angles about x- axis.

With further increase in t entropic contributions that favor ~v = 0 win over to increase the height

of the maximum (see Fig.3.13). Note that, py(vy) does not show multimodality as has been seen

in the transverse fluctuation of a polymer with one end grafted.

We then fix the stiffness at t = 4 and rotate the orientation of the other end and find out the

transverse fluctuation py(vy) (transverse to the orientation of first end, see Fig.3.9). At θ = θf =

0 the fluctuation is unimodal with the maximum at vy = 0. With increase in θ the orientation of

the other end rotates from positive x- axis towards positive y- axis. Energetically the polymer

gains the most if it bends on the perimeter of a circle. Therefore, energetically at any θ, the

peak of py(vy) should be at vy = ( 1. − cos θ )/θ. Thus at θ = 0, π/4, π/2, 3π/4, 7π/8, π the
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Figure 3.9: The upper panel shows py(vy) response of a polymer with both ends grafted along the
same direction at various stiffness parameters t. They always remain single moded. In lower panel,
py(vy) plotted for various relative angle between the orientations of two ends θ at t = 4. The inset
shows imergence of bistability at θ = π/4.

peak of py(vy) should be, respectively, at vy = 0, 0.37, 0.64, 0.72, 0.69, 0.64. Fig.3.9 shows that

the peak positions almost follow these values up to θ = π/2, above which entropic contribution

dominates. However, entropy always play a crucial role, e.g. at θ = π/4 showing a double

peak around vy = 0.37. At θ = π the two ends of the polymer are anti- parallel. Notice that,

as θ = π and θ = −π are physically the same thing, vy = ±0.64 are equally likely. Entropy

would like the two ends to bend to vy = 0. Competition between energy and entropy leads

to almost a constant distribution up to |vy| ∼ 0.5. Notice that the bending energy couples to

end orientations. For end orientations perpendicular to each- other, this coupling is strongest

leading to a peak position that is closest to energetic expectation. The behavior of py(vy) for
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Figure 3.10: The left panel shows the transverse response and the right panel shows the longitudinal
response of a polymer with both ends grafted along the same direction.

−π ≤ θ ≤ 0 is mirror symmetric about vy = 0 with respect to the behaviour of py(vy) in the

region 0 ≤ θ ≤ π.

Gibbs ensemble: We then work in the constant force ensemble by applying a force ~f = ŷfy. Let

us fix θ = 0, i.e. both ends are oriented along x- axis. We find out the corresponding transverse

and longitudinal response to this force in the similar manner as in the case of a polymer with

one end grafted (see Fig.3.10). The force extension carries the same qualitative features as for a

single end grafted polymer. For other end orientations (θ 6= 0) 〈vx〉 and 〈vy〉 does not remain

at zero at fy = 0. Otherwise the nature of responses remain the same. To see the impact of

the change in relative angle θ between the orientations at the two ends we calculate the average

extension of the polymer ends in x- and y- directions as we vary θ in constant force ensemble

at f = 0. Due to the bending energy, the 〈vx〉 is expected to by highest at θ = 0 and lowest

for θ = ±π. Similarly, 〈vy〉 is expected to be highest at θ = ± π/2 and lowest for θ = 0 and

θ = ±π. Fig.3.11 shows, while 〈vx〉−θ bears out the above expectations for all t, the expectation

of getting highest magnitude for 〈vy〉 at θ = ± π/2 is fulfilled only for lower stiffnesses (t ≥ 5).

At lower t the highest 〈vy〉 shifts towards higher relative angles θ as bending energy takes over

entropy. Note that, the smaller t gets, larger gets 〈vy〉, an impact of larger stiffness.

3.3.4 End to End Vector Distribution

We now employ MC simulations to study some other aspects of probability distribution in

Helmholtz ensemble. We first examine the radial distribution function p(v) (v = r/L,

p(v) = L2P (r)). It is clear from Fig.3.12 that grafting one end does not change the double

maxima feature in p(v) at intermediate values of stiffness (4 ≤ t ≤ 2). Though grafting both

the ends change the distribution function, the double maxima feature persists. Here we note that

once one end of a polymer is grafted immediately the system loses its spherical symmetry, more
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Figure 3.11: The upper panel shows the variation of 〈vx〉 as a function of θ and the lower panel
shows the variation of 〈vy〉 as a function of θ. 〈vx〉 and 〈vy〉 are calculated for stiffness parameters
t = 1, 2, 3, 4, 5, 10.

so, since we restrict ourselves to semi-flexible regime. We have already seen that the projected

probability distribution px(vx) and py(vy) are very different depending on the orientations of

polymer ends. However, for grafting of one end, this does not show up in radial distribution func-

tion p(v) (Fig.3.12). This is because, fixing one end only shifts the probability weight distributed

over all possible angles at a given radial distance v towards the direction of orientation but on

the same radial distance.

The full statistics is encoded in the vector distribution function p(vx, vy). To see the complete

structure of it we next obtain p(vx, vy) from MC simulations in FRC (for one or both ends

of the polymer free to rotate) and xy- model (for polymer with both its ends fixed in some
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Figure 3.12: The radial distribution function p(v) at stiffness t = 4 is plotted for the three different
boundary conditions – (a) both ends free, (b) one end oriented in x- direction and the other is free, (c)
both ends oriented in x- direction. Radial distribution of first two cases are equal, whereas for the third
case it is different. However, all three show double maxima.

given orientation) and plot the total distribution p(vx, vy) as a two dimensional density plot. We

compare p(vx, vy) of free polymer, polymer with one end grafted and polymer with both ends

grafted (Fig.3.13). For definiteness we chose all the graftings to be in the x- direction. We

plot p(vx, vy) over a range of stiffnesses (t = 0.5, 2, 4, 10). The distribution has finite values for

v ≤ 1 and zero for v > 1. This is due to the inextensibility constraint in WLC model. In these

density plots high probability is shown in red and low in blue (Fig.3.13). At small stiffness (large

t) p(vx, vy) shows a single entropic peak, at ~v = 0 for free polymer and slightly shifted towards

the direction of end- orientations in grafted polymers. This shifted entropic peak slowly moves

to ~v = 0 in the limit t → ∞.

With increase in stiffness (t = 4) an energy dominated probability peak starts to appear near

the full extension limit v = 1 of the polymer. This peak forms a circular ring for free polymers. For

a grafted polymer this peak is aligned in the direction of grafting. The probability distribution

p(vx, vy) at t = 4 clearly shows two regions of probability maxima, one near zero extension

another near full extension, that gives rise to the double maxima in radial distribution function

[42].

At larger stiffness (t = 2) the entropic maximum near the centre (~v = 0) disappears. For

the free polymer, one energy dominated maximum gets equally distributed over all angles. This

way the system uses its spherical symmetry to gain in entropy. For grafted polymers, probability

maximum near the full extension fans a finite solid angle around the direction of grafting. The

distribution around the grafting direction is narrower for the polymer with both its ends grafted
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Figure 3.13: Density plot of p(vx, vy). Color code : red - high density, blue - low density. Left
panel is for free polymer, middle panel is for polymer having one end grafted in x- direction and the
right panel is for polymer having both ends grafted in x- direction. From top to bottom four panels
denote stiffness values t = .5, 2, 4, 10. Note that the double maxima feature in p(vx, vy) (one maximum
near the centre and another near the rim) at t = 4 persists for all three boundary consitions.

along the same direction. End orientation and bending energy couples to decide the probability

distribution. This coupling is higher at smaller t [55]. This fact is more pronounced in plot of

p(vx, vy) at t = 0.5 (Fig.3.13). Spakowitz et. al. have investigated p(vx, vy) using their Greens

function calculations for a polymer with one of its ends grafted [55]. In this section we have used

MC simulations to study p(vx, vy) for all the possible boundary conditions. We have shown that

multiple maxima in p(vx, vy) persists near t = 4 for all these boundary conditions.

As mentioned earlier, in Helmholtz ensemble the free energy is given by F(vx, vy) = −(1/t) ln[p(vx, vy)].

In Fig.3.14 we plot this free energy profile on constant vx = 0 line at t = 4 and compare the three
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Figure 3.14: At t = 4 free energy profile F(vy) in y- direction at vx = 0 corresponding to the
probability distributions shown in Fig.3.13 are plotted. This clearly shows that the tripple minima feature
in free energy for a polymer with both ends free persists even after grafting one or both ends of the
polymer.

different boundary conditions. This is obtaind from vx = 0 cut of 2D probability density p(vx, vy).

This plot clearly shows that triple minima in free energy [42] prevails even after grafting one or

both ends of a semi- flexible polymer. This means that in constant extension ensemble if one

fixes the position of one end and traps the other end in 2D (both x- and y- directions) to extend

the end to end separation of a semiflexible polymer from the first free energy minimum at vy = 0

to full extension of vy along vx = 0 line, for small extensions an average force will try to pull back

the separation to zero corresponding to the central minimum of the free energy. However, once

the separation is taken beyond the maxima in the free energy near vy = ±0.5 the average force

will push the separation away from the center towards the non- zero vy minima in free energy.

Further extension will cause a huge force towards this second minimum in the free energy. This

is due to the inextensibility constraint in WLC model. Thus, in force- extension experiments on

a polymer in constant extension ensemble, this multi- stability (non- monotonic force extension)

at intermediate stiffness values will be measurable for all kind of boundary conditions[42]. The

coupling of end orientation and bending energy have raised the free energy of a polymer with

both its ends grafted, with respect to that of a free polymer and a polymer with one of its grafted

(Fig.3.14).

We again emphasize that whether the end to end vector distribution or some projected proba-

bility distribution will capture the results of a force- extension measurement will depend on the

kind of trapping potential (what are the directions in which it traps a polymer end). Apart from

this, as we have shown, the orientational boundary conditions at the ends of a polymer and the



3.4 Conclusion 39

ensemble of experiment will affect the force- extension behavior non- trivially.

3.4 Conclusion

In this chapter, we found the exact solution of WLC model of semi- flexible polymers for all

possible end orientations and in both Gibbs and Helmholtz ensembles. In previous chapter, we

had emphasized on the ensemble dependence of mechanical properties [42]. In this chapter we

have shown that polymer properties also crucially depend on end orientations. Conditions of fixed

end orientations are biologically important in several processes. Magnetic tweezer experiments

can be used in laboratory to study orientation dependent properties of semi- flexible polymers.

We have presented an exact theory to obtain end to end distribution function of WLC polymers by

calculating the propagator for a quantum particle moving on a unit sphere. For a finite chain, the

free energies in two ensembles were shown to be related via a Laplace transform relation which

in thermodynamic limit goes over to the typical Legendre transform relation. Two discretized

versions of WLC model have been used in MC simulations. In Helmholtz ensemble, for stiffness

parameters around t = 4, we found multimodality (multiple minima in free energy) for all kinds

of boundary orientations. Thus we have generalized the finding of triple minima in free energy

that we obtained for free polymers in the previous chapter [42]. The radial distribution function

of a free polymer and a polymer with a fixed orientation in one end show the same behavior.

This we trace back to the properties of full distribution of end to end vector. We have calculated

various projected probability distributions. The transverse fluctuation of a polymer with a fixed

orientation at one end had been studied using MC simulation [43] and an effective medium theory

[54] which approximately captures the qualitative features of the simulations. We have calculated

this fluctuation from our theory that shows exact numerical agreement with our simulation and

Lattanzi et. al.’s [43] simulation results. For a polymer with orientations at both its ends fixed,

the end to end distribution shows dependence on relative angle θ between the two ends. The end

orientations couple to the bending energy to take an unimodal distribution through bimodality

with change in θ. We have seen the general presence of non- monotoinic force extension in

Helmholtz ensemble. We have also studied the force- extension behavior in Gibbs ensemble.

These never show non- monotonicity. It is important to note that, multiple maxima in end to

end distribution means a non- monotonic force extension in Helmholtz ensemble, not in Gibbs

ensemble. As we have shown, the response function in Gibbs ensemble is always positive, thus non-

monotonicity in this ensemble is impossible. We have outlined the general theoretical framework

in d- dimensions. However, in this study we have looked at the properties of a 2D polymer. At the

onset we have shown that an important point of polymer statistics, multimodality, is dependent

on the dimensionality of embediing space. In three dimensional free polymer, multimodality in

projected probability distribution is impossible, however presence of this is a reality in 2D. Similar
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studies in 3D remains to be an interesting direction forward. The presence of multimodality in

intermediate range of stiffness (near t = 4) gives rise to a possibility of multi-stability in the

dynamics of semi- flexible polymers. The simplest question remains, for a free polymer how does

the presence of a triple minima in free energy affects its dynamics. This might be important in

the context of understanding the time- scale of a messanger- RNA finding out an active site on

a DNA chain.
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Reviewing Melquiades’ notes, serene now, without the exaltation of novelty, in

prolonged and patient sessions they tried to separate Úrsula’s gold from the

debris that was stuck to the bottom of the pot. – G. G. Márquez

In the previous two chapters we have studied the properties of a finite semiflexible polymer in

different ensembles and under different conditions of its boundary orientations. These conditions

can be implemented on the polymer by imposing various kinds of external trapping and constraints.

The finite size and bending rigidity of such molecules coupled with the boundary orientations

rendered the different statistical and mechanical properties. In this chapter we consider another

kind of trapping. A one dimensional modulating external trapping potential that couples with the

local density is applied on a two dimensional system of particles interacting via various spherically

symmetric short range repulsions. This trapping potential constrains the system in one direction.

We find out the phase behavior of this system with change in the strength of the trapping

potential. It is known that in two dimensions melting occurs by the unbinding of dislocation pairs

[61–63]. How does this scenario change if there are periodic constraining potentials which may

reduce the dimensionality of the system from two to one?

Examples of phase transitions mediated by the unbinding of defect pairs abound in two

dimensions. The quasi- long- ranged order to disorder transition in the XY and planar rotor

models[61, 64–68], the melting transition of two dimensional solid[61–63, 69–71], the super-

conductor to normal phase transition in two dimensional Josephson junction arrays[72], the

commensurate- incommensurate transition of the striped phase of smectic liquid crystals on

anisotropic substrates[73], and the more recent discovery of a defect mediated re-entrant freezing

transition in two dimensional colloids in an external periodic potential [74, 75] are all understood

within such defect unbinding theories. While the very first defect mediated transition theory

for the phase transition in the XY-model by Kosterlitz and Thouless (KT)[61] enjoyed almost

immediate acceptance and was verified in simulations[64–66, 68] as well as experiments[76, 77],

defect mediated theories of two dimensional melting took a long time to gain general acceptance

in the community[78]. There were several valid reasons for this reticence however.

Firstly, as was recognized even in the earliest papers[62, 63] on this subject, the dislocation

unbinding transition, which represents an instability of the solid phase, may always be pre-empted

41
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by a first order[79, 80] transition from a metastable solid to a stable liquid. Whether such a first

order melting transition actually occurs or not depends on the temperature of instability TKT ; so

that if the transition temperature Tc < TKT the unbinding of dislocations does not occur. Clearly,

neither this condition nor its converse can hold for all 2d systems in general. This is because

TKT is a non-universal number which depends on the “distance” in coupling parameter space

between the bare and the fixed point Hamiltonian and hence on the details of the interaction.

Secondly, the renormalization group flow equations derived in all defect mediated theories to

date are perturbative expansions in the defect density (fugacity) in the ordered phase. How

fast does this perturbation series converge? The answer lies again in the position of the bare

Hamiltonian in the coupling parameter space. For the planar rotor model[61, 68], past calculations

show that next to leading order terms in the flow equations are essential to reproduce the value

of the transition temperature obtained in simulations[68]. Thirdly, defect mediated transitions

predict an essential singularity[61] of the correlation length at the transition temperature. This

means that effects of finite size[81] would be substantial and may thoroughly mask the true

thermodynamic result. A rapid increase of the correlation length also implies that the relaxation

time diverges as the transition temperature is approached – critical slowing down. For the two

dimensional solid, this last effect is particularly crucial since, even far from the transition, the

motion of defects is mainly thermally assisted and diffusional and therefore slow. The equilibration

of defect configurations[82] is therefore often an issue even in solids of macroscopic dimensions.

On the other hand, over the last few years it has been possible to test quantitatively some of

the non-universal predictions of defect mediated theories of phase transitions using simulations

of restricted systems[68, 71, 83]. A simulation of a system without defects is used to obtain the

values for the bare coupling constants which are then taken as inputs to the renormalization group

equations for the appropriate defect unbinding theory to obtain quantities like the transition

temperature. Needless to say, the simulated system does not undergo a phase transition and

therefore problems typically related to diverging correlation lengths and times do not occur.

Numerical agreement of the result of this calculation with that of unrestricted simulations or

experiments is proof of the validity of the RG flow equations[61–63, 71]. This idea has been

repeatedly applied in the past to analyze defect mediated phase transitions in the planar rotor

model[68], two dimensional melting of hard disks[71] and the re-entrant freezing of hard disks

in an external periodic potential [83, 84]. The last system is particularly interesting in view of its

close relation with experiments on laser induced re-entrant freezing transition in charge stabilized

colloids [74, 75] and this constitutes the subject of the present chapter as well.

In this chapter we show in detail how restricted simulations of systems of particles interacting

among themselves via a variety of interactions and with a commensurate external periodic po-

tential can be used to obtain phase diagrams showing the re-entrant freezing transition. The

results obtained are compared to earlier unrestricted simulations for the same systems. Briefly
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our results are as follows. Firstly, we observe that, as in an earlier study of the planar rotor

model[68], next to leading order corrections to the renormalization flow equations are essential

to reproduce even the gross features of the phase diagram. Specifically, the re-entrant portion

of the phase diagram can be reproduced only if such correction terms are taken into account.

Secondly while we find almost complete agreement with earlier results for the hard disk system

which has been studied most extensively, our phase diagram for the other forms of interaction is

shifted with respect to the results available in the literature. This may mean either of two things

— inadequacy of the RG theory used by us or finite size effects in the earlier results. Lastly, as

a by product of our calculations, we have obtained the core energy for defects (dislocations) in

these systems and studied its dependence on thermodynamic and potential parameters.

The problem of re-entrant freezing transition of a system of interacting colloidal particles in a

periodic potential has an interesting history involving experiments[74, 75], simulations[85–92] and

theory[93–95]. In last couple of decades soft systems like colloids have been studied extensively[96]

both for their own sake and as typical toy models to study various important condensed matter

questions like structural and phase transitions through experiments that allow real space imaging.

Charged colloids confined within two glass plates form a model 2-d system as the electrostatic

force from the plates almost completely suppresses the fluctuations of colloids perpendicular to the

plates, practically confining them to a 2-d plane. In their pioneering experiment Chowdhury[74]

et. al. imposed a simple static background potential which is periodic in one direction and

constant in the other (except for an overall Gaussian profile of intensity- variation) by interfering

two laser beams. This potential immediately induces a density modulation in the colloidal system.

The potential minima are spaced to overlap with the close packed lines of the ideal lattice of

the colloidal system at a given density. With increase in potential strength such a colloidal

liquid has been observed to solidify. This is known as laser induced freezing (LIF). In a recent

experiment[75] it has been shown that with further increase in potential strength, surprisingly,

the solid phase re-melts into a modulated liquid. This phenomenon is known as re-entrant

laser induced freezing (RLIF). Qualitatively, starting from a liquid phase, the external periodic

potential immediately induces a density modulation, reducing fluctuations which eventually leads

to solidification. Further increase in the amplitude of the potential reduces the system to a

collection of decoupled 1-d strips. The dimensional reduction now increases fluctuations remelting

the system.

The early mean field theories, namely, Landau theory[74] and density functional theory[93] pre-

dicted a change from a first order to continuous transition with increase in potential strength and

failed to describe the re-entrant behavior, a conclusion seemingly confirmed by early experiments[74]

and some early simulations[85]. Overall, the results from early simulations remained inconclusive

however, while one of them[85] claimed to have found a tri-critical point at intermediate laser in-

tensities and re-entrance, later studies refuted these results [86–88]. All of these studies used the
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change in order parameter and the maximum in the specific heat to identify the phase transition

points. While some later studies[86–88] found RLIF for hard disks they reported laser induced

freezing and absence of any re-entrant melting for the DLVO potential[88] in direct contradiction

to experiments[75].

Following the defect mediated disordering approach of Kosterlitz and Thouless [61](KT), Frey,

Nelson and Radzihovsky[94](FNR) proposed a detailed theory for the re-entrant transition based

on the unbinding of dislocations with Burger’s vector parallel to the line of potential minima.

This theory predicted RLIF and no tricritical point. The results of this work were in qualitative

agreement with experiments[75] and provided a framework for understanding RLIF in general.

More accurate simulation studies on systems of hard disks[89], soft disks[91, 92], DLVO[90] etc.

confirmed the re-entrant freezing-melting transition in agreement with experiments[75] and FNR

theory[94, 95]. In these studies the phase transition point was found from the crossing of Binder-

cumulants[5, 97] of order parameters corresponding to translational and bond- orientational order,

calculated for various sub- system sizes. A systematic finite size scaling analysis[89] of simulation

results for the 2-d hard disk system in a 1-d modulating potential showed, in fact, several universal

features consistent with the predictions of FNR theory. It was shown in these studies that the

resultant phase diagram remains system size dependent and the cross- over to the zero field

KTHNY melting[62, 63] plays a crucial role in understanding the results for small values of

the external potential. While the data collapse and critical exponents were consistent with KT

theory for stronger potentials, for weaker potentials they match better with critical scaling[89]. A

common problem with all the simulation studies might be equilibration with respect to dislocation

movements along climb (or even glide) directions. Also, non universal predictions, namely the

phase diagram are difficult to compare because the FNR approach (like KT theory) is expressed

in terms of the appropriate elastic moduli which are notoriously time-consuming to compute near

a continuous phase transition. Diverging correlation lengths and times near the phase transition

further complicate an accurate evaluation of the non universal predictions of the theory.

We calculate the phase diagrams of three different 2-d systems with a 1-d modulating potential

(see Fig. 6.1) following the technique of restricted Monte Carlo simulations[68, 71, 83], to be

discussed below. For the laser induced transition we use this method to generate whole phase

diagrams. We reject Monte Carlo moves which tend to distort an unit cell in a way which changes

the local connectivity[71]. The percentage of moves thus rejected is a measure of the dislocation

fugacity[71]. This, together with the elastic constants of the dislocation free lattice obtained

separately, are our inputs (bare values) to the renormalization flow equations[94, 95] to compute

the melting points and hence the phase diagram. Our results (Fig. 4.13,4.17,4.16) clearly show a

modulated liquid (ML) → locked floating solid (LFS) → ML re-entrant transition with increase

in the amplitude (V0) of the potential. In general, we find, the predictions of FNR theory to be

valid.
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Figure 4.1: This cartoon shows a typical 2-d system under consideration. d is the length scale
over which repulsive two body potentials are operative. The dashed lines indicate minima of external
modulating potential βV (y) = −βV0 cos(2πy/d0). ax = a0 is the lattice parameter fixed by the density
ρ and ay indicate the average separation between two layers along y-direction perpendicular to a set
of close-packed planes. For a perfect triangular lattice ay =

√
3a0/2. The modulating potential is

commensurate with the lattice such that d0 = ay.

Lastly, we must mention that our technique, as summarized above and used in this as well

as earlier[83] work, corresponds closely with early studies of the melting of the electron solid by

Morf[69, 98]. In the latter case, the dislocation fugacity, which is one of the important inputs

to the KTHNY flow equations was obtained by a careful and direct calculation of the dislocation

core energy at T = 0. Our approach is somewhat cruder but gives us numbers for nonzero T

which automatically contain the effects of phonon fluctuations.

In section 4.1 we first briefly discuss the FNR theory and then go on to show in detail the

restricted simulation scheme used by us to obtain the various quantities required to calculate the

phase diagram. In section 4.2 we give the simulation results. We describe, in detail, the various

quantities leading to the phase diagram for one of the systems, viz. the hard disks[71, 99]. Then

we present the phase diagrams for the other two systems we study. We compare our results with

earlier simulations. Lastly, in section 5.7 we summarize our main results and conclude.

4.1 Method

A cartoon corresponding to the systems considered for our study is given in Fig. 6.1. The elastic

free energy of the solid is given in terms of the spatial derivatives of the displacement field

~u(~r) = ~r − ~r0 with ~r0 being the lattice vectors of the undistorted reference triangular lattice.
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For a solid in presence of a modulating potential βV (y) (Fig. 6.1) the displacement mode uy

becomes massive, leaving massless ux modes. After integrating out the uy modes the free energy

of the LFS may be expressed in terms of gradients of ux and elastic moduli[94, 95], namely, the

Young’s modulus K(βV0, ρ) and shear modulus µ(βV0, ρ),

Hel =

∫

dxdy

[

1

2
K

(

∂ux

∂x

)2

+
1

2
µ

(

∂ux

∂y

)2
]

(4.1)

Similar arguments[94, 95] show that among the three sets of low energy dislocations available in

the 2-d triangular lattice, only those (type I) with Burger’s vector parallel to the line of potential

minima survive at large βV0. Dislocations with Burger’s vector pointing along the other two

possible close-packed directions (type II) in the 2-d triangular lattice have larger energies because

the surrounding atoms are forced to ride the crests of the periodic potential[94, 95]. Within this

set of assumptions, the system therefore shares the same symmetries as the XY model. Indeed,

a simple rescaling of x → √
µx and y →

√
Ky leads this free energy to the free energy of the

XY-model with spin-wave stiffness Kxy =
√

Kµa2
0/4π2 and spin angle θ = 2πux/a0:

Hel =

∫

dxdy

[

1

2
Kxy(∇θ)2

]

This immediately leads to the identification of a vortex in XY model (
∮

dθ = 2π) with a dislocation

of Burger’s vector~b = îa0 (
∮

dux = a0, î = unit vector along x- direction) parallel to the potential

minima i.e. the dislocation of type I. The corresponding theory for phase transitions can then be

recast as a KT theory[61] and is described in the framework of a two parameter renormalization

flow for the spin-wave stiffness βKxy(l) and the fugacity of type I dislocations y ′(l), where l is a

measure of length scale as l = ln(r/a0), r being the size of the system. The flow equations are

expressed in terms of x′ = (πK̃xy − 2) where K̃xy = βKxy and y′ = 4π exp(−βEc) where Ec is

the core energy of type I dislocations which is obtained from the dislocation probability[71, 98].

Keeping up to next to leading order terms in y ′ the renormalization group flow equations[68, 100]

are,

dx′

dl
= −y′2 − y′2x′

dy′

dl
= −x′y′ +

5

4
y′3. (4.2)

Flows in l generated by the above equations starting from initial or “bare” values of x′ and y′

fall in two categories. If, as l → ∞, y′ diverges, the thermodynamic phase is disordered (i.e.

ML), while on the other hand if y′ vanishes, it is an ordered phase (a LFS)[94, 95]. The two

kinds of flows are demarcated by the separatrix which marks the phase transition point. For the

linearized equations, that keeps i only the leading order terms in y ′, the separatrix is simply
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the straight line y′ = x′, whereas for the full non-linear equations one needs to calculate this

numerically[68, 71, 100].

The bare numbers for x′ and y′ are relatively insensitive to system size since our Monte Carlo

simulation does not involve a diverging correlation length associated with a phase transition.

This is achieved as follows[68, 71]. We monitor individual random moves of the particles in a

system and look for distortions of the neighboring unit cells. If in any of these unit cells the

length of a next nearest neighbor bond becomes smaller than the nearest neighbor bond, the

move is rejected. All such moves generate disclination quartets and are shown in the Fig. 4.2.

Notice that each of these moves break a nearest neighbour bond to build a new next nearest

neighbour bond, in the process generating two 7-5 disclination pairs. These are the moves rejected

in the restricted simulation scheme we follow. The probabilities of such bond breaking moves

are however computed by keeping track of the number of such rejected moves. One has to

keep track of all the three possible distortions of the unit rhombus with measured probabilities

Pmi, i = 1, 2, 3 (see Fig. 4.2),

Pmi =
number of rejected bond breaking moves of type i

Total number of MC moves

Each of these distortions involves four 7− 5 disclinations i.e. two possible dislocation- antidislo-

cation pairs which, we assume, occur mutually exclusively in a way that we explain shortly. For a

free (V0 = 0) two dimensional system the dislocation core energy E t
c can be found through the

relation[98]

Π = exp(−β 2Et
c)Z(K̃) (4.3)

where Π =
∑3

i=1 Pmi is the total number density of dislocation pairs per particle and Z(K̃)

is the “internal partition function” incorporating all three types of degenerate orientations of

dislocations,

Z(K̃) =
2π

√
3

K̃/8π − 1

(

rmin

a0

)2−K̃/4π

I0

(

K̃

8π

)

exp

(

K̃

8π

)

where I0 is a modified Bessel function, K̃ = βKa2
0 is a dimensionless Young’s modulus renor-

malized over phonon modes, a0 being the lattice parameter and rmin is the separation between

dislocation-antidislocation above which one counts the pairs. The above expression for Z(K̃)

and Eq.(4.3) have been used previously in simulations[71, 98] of phase transitions of 2-d systems

in absence of any external potential to find the dislocation core energy E t
c.

We now show how the probabilities for generating pairs of specific types of dislocations Pdi for

V0 6= 0 are related to Pmi. Consider Fig.4.2 where each of the three varieties of bond breaking

moves are depicted. It is clear that each given distortion can occur due to the presence of two

possible dislocation- antidislocation pairs acting independently. For example a distortion of type-

A can take place either due to dislocation dipoles with Burgers vectors making an angle of 60o
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Figure 4.2: This diagram depicts all the possible dislocation generating moves that we reject.
Starting from the triangular lattice shown in the centre (the dotted lines show the potential minima),
in all, there can be three types of dislocation- pair generating moves shown as A, B & C. The numbers
7 and 5 denote the positions of two types of disclinations having seven nearest neighbours and five
nearest neighbours respectively. Only those bonds, which are necessary to show distortions due to the
generation of disclination quartets, have been drawn. The rhombi near each of the distorted lattice
denote the unit cells and open arrows from 7 → 5 show the direction of dislocation generating moves.
The probabilities of these moves are Pm1(A), Pm2(B) and Pm3(C). Corresponding Burger’s vectors
(filled arrows) are bisectors pointing towards a direction rotated counter-clockwise starting from 7 → 5
directions and are parallel to one of the lattice planes. Notice, the separation between Burger’s vectors
of a pair along the glide direction (parallel to the Burger’s vectors) is a single lattice separation (a0)
and within this construction it is impossible to draw Burger’s loop that can generate non-zero Burger’s
vector. Depending on which of the two possible disclination pairs separate out any one dislocation-
antidislocation pair will be formed.

with the horizontal or an angle of 120o. Both of these dislocation dipoles are of type II. If

this bond breaking move were to be accepted, then at a subsequent time step the individual

dislocations making up any one of the two possible pairs could separate, the two possible events

being mutually exclusive. This allows us to write down the following relations among the various

probabilities.

Pm1 = Pd2 + Pd3, Pm2 = Pd2 + Pd1, Pm3 = Pd3 + Pd1.

Solving for Pdis and remembering that Pd2 = Pd3 by symmetry, we get Pd1 = 1
2
(Pm2+Pm3−Pm1)
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and Pd2 = Pm1/2. The above expressions are motivated and illustrated in Fig.4.2. Once the

probability of dislocation pairs are obtained in this fashion, we may proceed to calculate the

dislocation core energy Ec and the dislocation fugacity y ′.

An argument following the lines of Fisher et. al.[98] shows that the dislocation probability

(number density of dislocation pair per particle) for our system,

Pd1 = exp(−β 2Ec)Z(K̃xy) (4.4)

where 2Ec is the core energy and Z(K̃xy) is the internal partition function of dislocation pair of

type I (single orientation).

Z(K̃xy) =

∫

r>rmin

d2r

Ac

exp

[

−2πK̃xy log

(

r

a0

)]

=
2π√

3

(rmin/a0)
2−2πK̃xy

πK̃xy − 1
(4.5)

with K̃xy = βKxy and Ac =
√

3a2
0/2 being the area of an unit cell in the undistorted lattice.

We choose rmin = 2a0. At this point this choice is arbitrary. We give the detailed reasoning

for this choice at the end of the discussions on hard disks in the section 4.2. Eq.4.4 and Eq.4.5

straightaway yield the required core energy Ec. The corresponding fugacity contribution to RG

flow equations (Eq.4.2) is given via

y′ = 4π

√

Pd1/Z(K̃xy) (4.6)

In the above, the following assumption is, however, implicit. Once a nearest neighbor bond

breaks and a potential dislocation pair is formed, they separate with probability one 1.This

assumption goes into the identity Eq.4.4 as well as in Eq.4.3[71]. Taking the rejection ratios due

to bond- breaking as the dislocation probabilities, as well, require this assumption 2.

The same restricted Monte Carlo simulation can be used to find out the stress tensor, and the

elastic moduli from the stress-strain curves. The dimensionless stress tensor for a free (V0 = 0)

system is given by[102],

βσλνd
2 = −d2

S

(

−
∑

<ij>

〈

β
∂φ

∂rij

rij
λ rij

ν

rij

〉

+ Nδλν

)

(4.7)

where i, j are particle indices and λ, ν denote directions x, y; φ(rij) is the two- body interaction,

S/d2 is the dimensionless area of the simulation box 3.

1This assumption is similar in spirit to assuming that a particle which reaches the saddle point in the
Kramers barrier crossing problem would automatically cross the barrier [101].

2Note that the calculation of the bare fugacity from the dislocation probability is, we believe, more accurate
that the procedure used in [83].

3In the presence of an external 1D modulating potential periodic in the y- direction the stress has contri-

bution from another virial- like additive term, − βd
2

S

〈
∑

λ yλfλ
y

〉

, where yλ is the y-component of position
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4.2 Results and Discussion

In this section we present the results from our simulations for three different 2-d systems, namely

hard disks, soft disks and a system of colloidal particles interacting via the DLVO (Derjaguin-

Landau-Verwey-Overbeek)[103, 104] potentials. We discuss, first, our calculation for a two

dimensional system of hard disks, in detail. The procedure followed in other systems is almost

identical.

Hard disks: The bulk system of hard disks where particles i and j, in 2-d, interact via the

potential φ(rij) = 0 for rij > d and φ(rij) = ∞ for rij ≤ d, where d is the hard disk diameter

and rij = |rj − ri| the relative separation of the particles, is known to melt[71, 99, 105–107]

from a high density triangular lattice to an isotropic liquid with a narrow intervening hexatic

phase[62, 63, 71, 99]. The hard disk free energy is entirely entropic in origin and the only

thermodynamically relevant variable is the number density ρ = N/V or the packing fraction

η = (π/4)ρd2. Simulations[99], experimental[96] and theoretical[108] studies of hard disks show

that for η > .715 the system exists as a triangular lattice which transforms to a liquid below

η = .706. The small intervening region contains a hexatic phase predicted by the KTHNY

theory[62, 63] of 2-d melting. Apart from being easily accessible to theoretical treatment[109],

experimental systems with nearly “hard” interactions viz. sterically stabilized colloids[96] are

available.

In presence of a periodic external potential, the only other energy scale present in the system

is the relative potential 4strength βV0. If the modulating potential is commensurate with the

spacing between close- packed lines, the elastic free energy of this system in it’s solid phase

follows Eq.4.1 and the corresponding renormalization flow equations are given by Eq.4.2.

We obtain the bare y′ and x′ from Monte Carlo simulations of 43× 50 = 2150 hard disks and

use them as initial values for the numerical solution of Eqs. (4.2). The Monte Carlo simulations

for hard disks is done in the usual[110] way viz. we perform individual random moves of hard disks

after checking for overlaps with neighbours. When a move is about to be accepted, however,

we look for the possibility of bond breaking as described in the previous section (Fig.4.2). We

reject any such move and the rejection ratios for specific types of bond breaking moves give us

the dislocation probabilities of type I and II, separately (Fig.5.12).

vector of particle λ. This contribution comes from the part of the free energy that involves higher energy
(massive) excitations. For the elastic free energy which is lowest order in the displacement gradient
(Eq.4.1) this part does not contribute towards the elastic constants, as the x- and y- component of gra-
dient remain uncoupled. This extra term in stress remains a constant background without disturbing
the elastic constants connected to the Young and shear modulus that corresponds to distortions of the
system in the low energy directions. We therefore neglect this background in calculating stresses where
from we obtain the elastic moduli.

4This interaction in colloids is due to polarization of the dielectric colloidal particles by the electric field
of the laser. Though experiments of Refs.[74, 75] use charged colloids, the interaction of hard sphere
colloids with lasers is similar.
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Figure 4.3: Number density of dislocation pairs of type I and II per particle as a function of the
amplitude of the laser potential βV0. In this plot the � symbols correspond to Pd1, the probability
for type I dislocations and the × symbols to Pd2 the probability for type II dislocations obtained
from the Pmi (see text and Fig.4.2) for various η values, arrow denoting the direction of increasing
η(= .69, .696, .7029, .71). The Pdi for i = 1, 2 are multiplied by 104. These probabilities are plotted
against the potential strength βV0. Note that for βV0 > 1, the probability for type I dislocations is
larger than that of type II. The dots and solid lines are only guides to eye.

From Fig.5.12 it is clear that the probability of type II dislocations i.e. Pd2 drops down to

zero for all packing fractions at higher potential strengths βV0. The external potential suppresses

formation of this kind of dislocations. For small βV0 on the other hand, the probabilities of type I

and type II dislocations are roughly the same. This should be a cause of concern since we neglect

the contribution of type II dislocations for all βV0. We comment on this issue later in this section.

Using Eq.4.6 and Eq.4.5 along with the identity rmin = 2a0 gives us the initial value y′
0 to be

used in renormalization flow Eq.4.2.

Before we move on, we comment on the magnitude of the errors for Pmi and hence for

y′
0. There are two main sources of errors for these quantities. This may arise from (a)finite

simulation times and (b)small size of the system. In order to check for this, we have plotted the

accumulated values for the probability Pd1 as a function of Monte Carlo step for 2150 and 21488

hard disks (Fig.4.4). It is clear that our estimates for the probabilities are virtually error free!

This demonstrates clearly the usefulness of our restricted Monte Carlo scheme.

To obtain Kxy we need to calculate the Young’s modulus K and shear modulus µ. In order to

do that consider Eq.4.7, the expression for stress tensor. For hard disk potentials the derivative

∂φ/∂rij becomes a Dirac delta function and the expression for stress can be recast into[102]

βσλνd
2 = −d2

S

(

∑

<i,j>

〈

rij
λ rij

ν

rij
δ(rij − d)

〉

+ Nδλν

)

(4.8)

The presence of the Dirac delta function δ(rij−d) in the above expression requires that the terms
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Figure 4.4: Pd1 as a function of MC steps. Pd1 has been multiplied by 104 and MC steps has been
multiplied by 10−4 for clarity. The data have been collected for η = .7029 and βV0 = 1. Panel (a) is
for system size of 2150 particles whereas (b) for 21488 particles. Within 105 MC steps all fluctuations
die out. Clearly, the dependence of the dislocation number density on the system sizes and the Monte
Carlo errors are negligible. To calculate dislocation fugacity we use averaging of data between 5 × 105

to 106 MC steps.
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Figure 4.5: Plot of βd2σxx vs. δ/d at a strain value εxx = .02 for packing fraction η = .7029 and
potential strength V0 = 1. A second order polynomial fit (solid line) utilizing the error bars to assign
weights to each data points gives limδ→0 βd2σxx = −6.21 with an error within .08%.

under the summation contribute, strictly, when two hard disks touch each other i.e. r ij ≡ r = σ.

In practice, we implement this, by adding the terms under summation when each pair of hard

disks come within a small separation r = σ + δ. We then find βσλνd
2 as function of δ and fit

the curve to a second order polynomial. Extrapolating to the δ → 0 limit obtains the value of a

given component of stress tensor at each strain value ελν [102](Figs 4.5,4.7).

For completeness, now we show how we calculate the two relevant elastic moduli from the
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Figure 4.6: A typical stress-strain curve used to obtain the Young’s modulus from a linear fit (solid
line). The graph is plotted at η = .7029, V0 = 1.0. The fitted Young’s modulus βKd2 = 54.5 with an
error within 2.9%. The error bars in stress are less than .2% and much smaller than the point sizes
plotted in this graph.
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Figure 4.7: Plot of βd2σxy vs. δ/d at strain value εxy = .079 at the packing fraction η = .7029
and potential strength V0 = 1. A second order polynomial fit (solid line) gives limδ→0 βd2σxy = 1.033
with an error within .5%.

stresses : σxx at a given longitudinal strain εxx (Fig. 4.5) and σxy for a shear strain εxy (Fig. 4.7).

All the data points are from our MC simulations averaged between 10, 000-20, 000 MC steps.

Increasing the number of configurations does not change the values significantly. The total errors

arising from the MC simulations and the fit for a typical calculation of stresses is less than a

percent. We thus calculate the stress at each value of strain and from the slopes of stress-strain

curves find out the bare Young’s modulus βKd2 (Fig. 4.6) and shear modulus βµd2(Fig. 4.8).
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Figure 4.8: A typical stress-strain curve used to obtain shear modulus from a linear fit (solid line).
The graph is plotted at η = .7029, V0 = 1.0. The fitted shear modulus βµd2 = 13.5 with an error
within .9%. The error bars in stress are less than .5% and much smaller than the point sizes plotted
in this graph.

We impose an elongational strain in x- direction which is parallel to the direction of potential

minima to obtain βKd2. Imposition of a shear strain in the same direction gives us βµd2. Any

strain that forces the system to ride potential hills will give rise to massive displacement modes

which do not contribute to elastic theory. Our results for the stress strain curves for obtaining

βKd2 and βµd2 are shown in Figs 4.6,4.8 respectively. Note that the errors for the calculation

of the elastic constants arise solely from the fitting of the stress- strain curves. These can be

made as small as possible by increasing the number of strain values at which the stresses are

calculated. The values of the stress are also free from any residual finite size effects which we

checked by simulating systems of sizes 10 × 10 to 136 × 158. From these elastic moduli we get

the ‘bare’ K̃xy (and hence x′
0 = πK̃xy −2, see section 4.1). Our final estimate for the ‘bare’ K̃xy

are also correct to within a percent.

In Ref.[95] it is argued that the elastic constant βKd2 remains more or less independent of

amplitude of the laser potential βV0, while the shear modulus decreases linearly with increasing

βV0 for large βV0. In figures 4.9 and 4.10 we have plotted the values of βKd2 and βµd2

respectively as a function of βV0. It is apparent that the expectations of Ref.[95] are borne out

by our data. Incidentally, the behaviour of βKd2 and βµd2 with increasing βV0 offers an intuitive

interpretation of the RLIF transition which we offer below.

In Fig. 4.11 we have plotted x′
0 and y′

0 the bare values of x′ and y′ for various potential

strengths βV0 at packing fraction η = .7029 along with the separatrices for the linearized and
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Figure 4.10: Shear modulus βµd2 as a function of inverse laser potential (βV0)
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denote different densities – � denotes η = .7029, 4 denotes η = .705 and � denotes η = .7. The
dotted line is a linear fit of the form βµd2 = a/βV0 + b in the large βV0 limit[95].

the non-linear flow equations (Eq. 4.2). The line of initial conditions is seen to cross the non-

linear separatrix twice (signifying re-entrant behaviour) while crossing the corresponding linearized

separatrix only once at high potential strengths. For small βV0 the freezing transition is seen

to be driven mainly by the decrease of y ′ (the dislocation density) since βKd2 and βµd2 are

virtually constant. For large βV0, the shear modulus βµd2 vanishes and this results in the second

point of intersection with the separatrix (remelting). The phase diagram (Fig. 4.13) is obtained

by computing the points at which the line of initial conditions cut the non-linear separatrix using

a simple interpolation scheme. It is interesting to note that within a linear theory the KT flow
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Figure 4.11: The initial values of x′ and y′ obtained from the elastic moduli and dislocation
probability at η = .7029 plotted in x′−y′ plane. The line connecting the points is a guide to eye. The
arrow shows the direction of increase in βV0(= .01, .04, .1, .4, 1, 4, 10, 40, 100). The dotted line denotes
the separatrix (y′ = x′) incorporating only the leading order term in KT flow equations. The solid curve
is the separatrix when next to leading order terms are included. In l → ∞ limit any initial value below
the separatrix flows to y′ = 0 line whereas that above the separatrix flows to y ′ → ∞. The intersection
points of the line of initial values with the separatrix gives the phase transition points. The plot shows
a freezing transition at βV0 = .1 followed by a melting at βV0 = 30.

equations fail to predict a RLIF transition. Performing the same calculation for different packing

fractions η we find out the whole phase diagram of RLIF in the η- βV0 plane.

Small, residual numerical errors in x′
0 and y′

0 translate into errors in the location of the phase

transition points. These are calculated as follows. The quantity βKxy varies linearly with η at

all potential strengths. Therefore the numerical error in η is proportional to the error in βKxy

(see Fig. 4.12). The error in y′
0 is neglected 5. The final error estimates are shown (as vertical

error bars) in our results for the phase diagram of hard disks in an external potential in Fig.4.13.

Comparing with previous computations[88, 89] of the phase diagram for this system (also shown

in Fig. 4.13) we find that, within error- bars, our results agree at all values of η and βV0 with

the results of Strepp et. al. [89]. In numerical details, they, however, disagree with the results

of C. Das et. al.[88], though even these results show RLIF and are in qualitative agreement with

ours. This validates both our method and the quantitative predictions of Ref. [94, 95].

5The error in y′

0 has contributions from both Pdis and from Kxy while the former is practically zero, the
contribution from the latter is neglected in this work.
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The effect of higher order terms in determining non-universal quantities has been pointed out

earlier[68] for the planar rotor model but in the present case their inclusion appears to be crucial.

Nevertheless, we expect our procedure to break down in the βV0 → 0 limit where effects due

to the cross-over from a KT to a KTHNY[62, 63] transition at βV0 = 0 become significant.

Indeed, as is evident from Fig. 5.12 for βV0 < 1 the dislocation probabilities of both type I and

type II dislocations are similar 6 and the assumptions of FNR theory and our process (which

involves only type I dislocations) need not be valid at small potential strengths. This fact is also

supported by Ref.[89] where it was shown that though at βV0 = 1000 the scaling of susceptibility

and order parameter cumulants gave good data collapse with values of critical exponents close

to FNR predictions, at βV0 = .5, on the other hand, ordinary critical scaling gave better data

collapse than the KT scaling form, perhaps due to the above mentioned crossover effects. In the

asymptotic limit of βV0 → ∞ the system freezes above η = .706 which was determined from a

separate simulation in that limit. This number is very close to the earlier value η ∼ .71 quoted in

Ref.[89]. As expected, the freezing density in the βV0 → ∞ limit is lower than the value without

the periodic potential i.e. η ' .715.

Before we go on to discuss other systems, we discuss the reasons behind the particular choice

6In analysing Fig.3 we must keep in mind that we can calculate from our simulations only the probability
of formation of a disclination quartet. While we can, perhaps, safely assume that if type I dislocations
are involved, they will seperate out with unit probability, the same can not be said of type II dislocations.
This means that the probability of type II dislocations could be much lower than what Fig.3 suggests.
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Figure 4.13: The phase diagram of the hard disk system in the presence of a 1-d, commensurate,
periodic potential in the packing fraction (η) - potential strength (βV0) plane. The points denoted by �

correspond to our RG calculation using the techniques described in this chapter. The points denoted by
♦[89] and ∗[88] are taken from earlier simulations. The vertical bars denote estimate of error. Our data
clearly matches with Ref[7].The horizontal line at η = .706 denotes the calculated asymptotic phase
transition point at βV0 = ∞.

of rmin that we made throughout this work. After a disclination quartet is formed, they get

separated out and the easy direction of separation is the glide direction which is parallel to the

Burger’s vector. In Fig.4.14 we show four steps of separation of such a dislocation pair of type

I. It is clear that, it is possible to give individual identification to a dislocation only when the

Burger’s vector separation within a pair is ≥ 2a0 (Fig.4.14) i.e. rmin = 2a0. For r ≥ 2a0

Burger’s loops can be drawn around each 5 − 7 disclination pair (Fig.4.14) giving rise to a non-

zero Burger’s vector. After motivating rmin = 2a0 we show, in Fig.4.15, the three sets of initial

values corresponding to rmin = a0, 2a0, 3a0 along with the non-linear separatrix at η = .7029

of hard disk system. It is clear from the figure that rmin = a0 predicts the system to be in the

solid phase for any arbitrarily small amount of external potential and to melt at larger βV0. This

behaviour contradicts physical expectation that the melting density at βV0 = 0 has to be larger

than that at βV0 = ∞. On the other hand, while rmin = 3a0 does not produce any unphysical

prediction, it shrinks the region of re-entrance in the βV0 direction. It is therefore satisfying

to note that rmin = 2a0, the minimum possible value for the separation between members of a

dislocation- antidislocation pair which allows unambiguous identification also produces physically

meaningful results for the phase diagram in closest agreement with earlier simulation data.

It is possible to find out phase diagrams of any 2-d system in presence of external modulating

potential commensurate with the density of the system in a similar fashion. We illustrate this by

calculating similar phase diagrams for two other systems, viz. soft disks and the DLVO system.
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Figure 4.14: The figures a – d which we have drawn using the applet ”voroglide”[111] show four
steps of separation of a type I dislocation pair, from a separation of a0 to 4a0. The shaded regions
show the 5 − 7 disclination pairs constituting the dislocations. Burger’s circuits are shown in a – c.
Note that for separations ≥ 2a0 separate Burger’s circuits around each disclination pair give rise to non-
zero Burger’s vectors, giving the dislocations their individual identity. This shows that the minimum
meaningful separation between dislocation cores rmin = 2a0.

Soft disks: Soft disks interact via the potential :

φ(r) =
1

r12

where r denotes the separation between particles. In simulations, the cutoff distance is chosen to

be rc = 2 above which the particles are assumed to be non- interacting. Apart from the external

potential strength βV0 the relevant thermodynamic quantity is the number density ρ = N/LxLy.

To obtain ‘bare’ elastic moduli from restricted simulations the stress is calculated using Eq.4.7. As

this expression does not involve any Dirac delta functions (unlike hard disks), we do not require

any fitting and extrapolation to obtain the stresses and the errors are purely due to random

statistical fluctuations in our MC simulations. The elastic moduli are again found from stress-

strain curves like Figs.4.6,4.8. The dislocation fugacity of type I is calculated from rejection ratio

of dislocation generating moves. All these, at a given ρ value generate the initial conditions x′
0

and y′
0 in RG flow diagrams. Again, the crossing of these initial conditions with the separatrix

found from Eq.4.2 gives the phase transition points. The phase diagram is plotted and compared

with phase diagram from earlier simulations[91, 92] in Fig.4.16. The error bar in ρ is found from

the error in K̃xy, as K̃xy varies linearly with ρ, through the relation δρ/ρ = |1+a/ρb|(δK̃xy/K̃xy)

where a and b are obtained from a linear (a + bx) fit of the K̃xy vs. ρ curve, at any given βV0.

The phase diagram (Fig. 4.16) again clearly shows re-entrance (RLIF). This is in qualitative

agreement with earlier simulations[91, 92] (see Fig.4.16).

DLVO: For charge stabilized colloids the inter-particle potential that operates is approximately
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Figure 4.15: Similar to Fig.4.11. The initial conditions x′
0 and y′0 are plotted as a function of βV0.

The different data sets are created for different values of rmin. The symbols mean the following : ♦

denotes data for rmin = a0, � denotes that for rmin = 2a0 and 4 denote data for rmin = 3a0. The
dotted line denotes the non- linear separatrix.
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Figure 4.16: Phase diagram for soft disks: � denote our calculation, ♦ indicate earlier simulation
data[91, 92]. The vertical lines are the error- bars.

given by the DLVO potential [103, 104]:

φ(r) =
(Z∗e)2

4πε0εr

(

exp(.5κd)

1 + .5κd

)2
exp(−κr)

r

where r is the separation between two particles, d is the diameter of the colloids, κ is the inverse

Debye screening length, Z∗ is the amount of effective surface charge and εr is the dielectric

constant of the water in which the colloids are floating. In order to remain close to experimental
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Figure 4.17: Phase diagram for particles interacting via the DLVO potential. � denote our
calculation, ♦ show the earlier simulation data[90]. The vertical lines are the error- bars. Error bars in
our calculation being smaller than the symbol size are not shown.

situations and to be able to compare our phase diagram with the simulations of Strepp et. al.[89]

we use T = 293.15K, d= 1.07µm, Z∗ = 7800, εr = 78. In experiments, the dimensionless

inverse Debye screening length κas can be varied either by changing κ through the change

in counter-ion concentration or by changing as by varying density[112]. In our restricted MC

simulations we vary κ keeping the density fixed at 0.18µm−2 by fixing the lattice parameter of

the in ital configuration of ideal triangular lattice at as = 2.52578µm. Further, we use a cut-

off radius rc such that, φ(r > rc) = 0 where rc is found from the condition βφ(rc) = .001.

We find out phase transition points (in κas) at different external potential strengths βV0 in

the same fashion as described earlier. The phase diagram in κas − βV0 plane is shown in

Fig. 4.17. To obtain error bars in this case we note that K̃xy varies linearly with κas and

therefore the error in K̃xy is proportional to the error in κas (Fig.4.17) through the relation

δ(κas)/(κas) = |1 + a/bκas|(δK̃xy/K̃xy). The quantities a and b are found from fitting K̃xy to

a linear form of κas, at any given βV0.

Though there is a quantitative mismatch between our data and that of Strepp et. al.[90], our

data shows a clear region in κas (between 15.1 and 15.2) where we obtain re-entrance (RLIF).

This is in contrast to the simulated phase diagram of C. Das et. al.[88], where they observe

absence of re-entrance at high field strengths. We do not plot their data as the parameters these

authors used are not the same as the ones used in Fig.4.17.

It is interesting to note that, with increase in the range of the two- body interaction potentials

the depths of re-entrance (in η, ρ or κas) decreases. This is again in agreement with the

understanding that, the re-entrant melting comes about due to decoupling of the 1-d trapped

layers of particles that reduces the effective dimensionality thereby increasing fluctuations. With
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an increase in range of the interacting potentials this decoupling gets more and more suppressed,

thereby reducing the region of re-entrance.

One aspect of our study which stands out is the exceptionally better agreement of our results

with previous simulations for hard disks as opposed to systems with soft potentials like the soft

disks and the DLVO. This could, in principle, be due either (a) to the failure of the RG equations

used by us or some other assumptions in our calculations (b) or to unaccounted finite size effects

in earlier simulations. While it is difficult to estimate the effect of (a) since RG equations to

higher orders in y are unknown at present, we may be able to motivate an estimation for (b). In

order to explain the discrepancy in the positions of the phase boundaries, we need to go into some

details of how the phase diagrams were obtained in the earlier simulations. In these simulations

[89–92] the phase boundaries were obtained from the crossing of the order parameter cumulants

[5, 97] for various coarse graining sizes. The system sizes simulated in these studies are the same

(N = 1024). However, the range of interaction differs. To obtain an objective measure we define

the range of the potentials ξ as that at which the interaction potential φ is only 1% of its value

at the lattice parameter. In units of lattice parameter, we obtain, for soft disks ξ = 1.47 and

for the DLVO potential ξ = 1.29 at typical screening of κas = 15. By definition, for hard disks

ξ = 1. The particles within the range of the potential are highly correlated and we calculate

the number Ncorr of such independent bare uncorrelated particles within the full system size.

Ncorr takes the values Ncorr = 1024, 473.88, 615.35 for hard disks, soft disks and the DLVO

potential respectively. Since the effective system sizes are smaller for the soft potentials, finite

size effects are expected to be larger. In this connection, it is of interest to note that in the

same publications [89–92] a systematic finite size analysis showed that the phase diagrams shift

towards higher (lower) density (kappa) for hard and soft disks (DLVO). A look at Fig.4.16 and

4.17 should convince the reader that such a shift would actually make the agreement with our

results better. We emphasize here that our present restricted simulations are virtually free of

finite size effects since the system does not undergo any phase transition.

4.3 Conclusion

We have presented a complete numerical renormalization group scheme to calculate phase dia-

grams for 2-d systems under a commensurate modulating potential. We have used FNR theory

along with this scheme to calculate phase diagrams for three different systems, namely, the hard

disks, the DLVO and the soft disks. In all the cases we have found laser induced freezing followed

by a re-entrant laser induced melting. We show that the re-entrance behavior is built into the

‘bare’ quantities themselves. We find extremely good agreement with earlier simulation results.

In particular the phase diagram for hard disk comes out to be exactly the same as found from

one set of earlier simulations[89].To obtain the correct phase diagram, however, flow equations
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need to be correct at least upto next to leading order terms in the dislocation fugacity. Our

results, especially for small potential strengths, is particularly sensitive to these terms. Cross-over

effects from zero potential KTHNY melting transition are also substantial at small values of the

potential.

In this chapter we have studied the phenomena of RLIF, that comes about due to a confining

potential which is constant in one direction and modulating in the other. In next chapter we shall

study the effect of another kind of confinement. We shall confine a two dimensional solid in a

narrow but long channel and will find out its properties, phases, strain induced failure and phase

diagram.
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5 Confined Solid: Phases and Failure

One afternoon the boys grew enthusiastic over the flying carpet that went swiftly

by the laboratory at the window level . . . – G. G. Márquez

In the last chapter we studied phase transitions in a two dimensional solid driven by a periodic

confining potential which caused a dimensional crossover from two to one dimension as the

amplitude of the periodic potential was increased. In this chapter we study the effect of a different

kind of external potential which forces a system of “hard-disk” atoms to remain in-between one

and two dimensions. Specifically, we consider here the mechanical and thermodynamic properties

of a narrow strip of crystalline solid with one dimension much longer than the other other i.e.

a quasi one dimensional (Q1D) system. In the short dimension, the solid is confined by hard,

featureless walls.

We shall show in this chapter, that such a Q1D solid strip has rather anomalous properties, which

are quite different from bulk one, two or three dimensional systems. The Q1D solid is shown to

have a non zero Young’s modulus which offers resistance to tensile deformations and approximate

two dimensional hexagonal crystalline order. On the other hand, the shear modulus of the system

is vanishingly small. Large wavelength displacement fluctuations are seen to destabilize crystalline

order beyond a certain length scale at low densities. At high densities these fluctuations appear

to be kinetically suppressed. The failure properties of this quasi solid is also rather interesting.

In the constant extension (Helmholtz) ensemble, the initial rise in the tensile stress with tensile

loading is interrupted at a limiting value of strain and on further extension the stress rapidly falls

to zero accompanied by a reduction in the number of solid layers parallel to the hard wall by

one. However, this failure is reversible and the system completely recovers the initial structure

once the strain is reduced. The critical strain for failure by this novel mechanism, for small

channel widths, decreases with increase in channel width so that thinner strips are more resistant

to failure. We have used an idealized model solid to illustrate these phenomena. Our model solid

has particles (disks) which interact among themselves only through excluded volume or “hard”

repulsion. We have reasons to believe, however, that for the questions dealt with in this chapter,

the detailed nature of the inter particle interactions are relatively irrelevant and system behaviour

is largely determined by the nature of confinement and the constraints. Our results may be

directly verified in experiments on sterically stabilized “hard sphere” colloids[96] confined in glass

65
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channels and may also be relevant for similarly confined atomic systems interacting with more

complex potentials. We have also speculated on applications of this reversible failure as accurate

strain transducers or strain induced electrical or thermal switching devices. In the next chapter

we shall study thermal transport across this Q1D solid, especially with respect to the effects of

reversible failure on the transport coefficients.

Studies of small assemblages of molecules with one or more dimensions comparable to a few

atomic spacings are significant in the context of nano-technology[113, 114]. Designing nano-

sized machines requires a knowledge of the mechanical behavior of systems up to atomic scales,

where, a priori, there is no reason for our ideas, derived from macroscopic continuum elasticity

theory, to be valid[115]. Small systems often show entirely new behaviour if hard constraints are

imposed leading to confinement in one or more directions. Consider, for example, the rich phase

behaviour of quasi two-dimensional colloidal solids [116–121] confined between two glass plates

showing square, triangular and “buckled” crystalline phases and a, recently observed, re-entrant

surface melting transition[122] of colloidal hard spheres not observed in the bulk[71, 99, 105–107].

Recent studies on various confined Q1D systems have shown many different structures depending

on the range of interactions and commensurability of the natural length scale of the system with

the length scale of confinement [123, 124]. These structures play crucial role in determining the

local dynamical properties like asymmetric diffusion, viscosity etc. and phase behaviour [125].

A study by G. Piacente et. al. [123] on confined charged particles interacting via the screened

Coulomb potential and confined in one direction by a parabolic potential showed many zero

temperature layering transitions, i.e. change in the number of layers with a change in density or

range of interaction. This also showed regions where these transitions were reentrant [123]. Apart

from the transition from one to two layers, all these layering transitions were shown to be first

order [123]. At high temperature this classical Wigner crystal melts and the melting temperature

shows oscillations as a function of density [123]. Such oscillations are charecteristic of confined

systems, arising out of commensurability. Confined crystals always align one of the lattice planes

along the direction of confinement [123, 124] and confining walls generate elongational asymmetry

in the local density profile along the walls even for the slightest incommensuration. A study by R.

Haghgooie et. al. on a system of purely repulsive dipoles confined in Q1D hard channel showed

layering transitions mediated via an order- disorder transition near the centre of the channel [124].

All the structural properties showed oscillations as the channel width increased [124]. Wall

induced layering was also observed in a dusty-plasma study by L.-W. Teng et. al. [126] and in

shell structures in circular confinements [127–131]. A similar layering transition, in which the

number of smectic layers in a confined liquid changes discretely as the wall-to-wall separation is

increased, was noted by P. G. deGennes [132] and J. Gao et. al. [133]. J. Gao et. al.’s study also

revealed the relations between the local layering structures and dynamical quantity like diffusion

constant [133]. deGennes and Gao et. al.’s work also calculated the wall to wall force due to
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this smectic layering and its commensurability with channel width. For long ranged interactions

extreme localization of wall particles has been observed in studies of V. M. Bedanov et. al. [127]

and R. Haghgooie et. al. [124]. In an earlier experiment on confined steel balls in Q1D vibrated

to simulate the effect of temperature, layering transition, phase coexistance and melting was

observed by P. Pieranski et. al. [134]. Confinement, in general, can lead to new behaviours

in various systems and processes. Schmidt and Lowen [120] studied the phase behaviour of a

collection of hard spheres confined within a two dimensional slit defined by two parallel hard

plates. Plate separations such that upto two layers of solid are accomodated were considered by

these authors. Recently Fortini and Dijkstra studied the same system for separations of one to

five hard sphere diameters to find a rich phase diagram consisting of a dazzling array of upto

26 distinct crystal structures[121]. Similar studies had been carried out long back in 1983 by

Pieranski and his group [116] to find out many of the structures identified by Fortini et. al. [121].

In biology specific structures of proteins are required for their specific functioning which keeps

a cell living. Double barreled chaperonins capture protiens into them to fold them to specific

structures. Recently, an array of genetically engineered chaperonin templates have been used by

McMillan et. al. [135] to produce ordered nano- particle arrays.

This chapter is organized as follows. In the next section, we shall introduce the model confined

solid and discuss the geometry and basic definitions of various structural and thermodynamic

parameters. We shall then introduce the various possible structures and phases with their basic

characteristics. This will be followed by the results of computer simulations, in the constant

NAT (number, area, temperature) ensemble, exploring the deformation and failure properties

of this system and the relation of the various structures described in the previous section to

one another. In the fifth section we shall try to understand the various transitions seen in the

computer simulations within simple mean field free volume and density functional approaches. In

section VI we shall show the effect of fluctuations and its role in destruction of long range order

in this system. We conclude the chapter in section VII.

5.1 The Model System

The bulk system of hard disks where particles i and j, in two dimensions, interact with the

potential Vij = 0 for |rij| > d and Vij = ∞ for |rij| ≤ d, where d is the hard disk diameter and

rij = rj − ri the relative position vector of the particles, has been extensively[71, 99, 105–107]

studied. Apart from being easily accessible to theoretical treatment[109], experimental systems

with nearly “hard” interactions viz. sterically stabilized colloids[96] are available. The hard

disk free energy is entirely entropic in origin and the only thermodynamically relevant variable

is the number density ρ = N/V or the packing fraction η = (π/4)ρd2. Accurate computer

simulations[99] of hard disks show that for η > ηf = .719 the system exists as a triangular
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Figure 5.1: The confined solid is shown along with the centered rectangular (CR) unit cell. For
an unstrained triangular lattice ax = a0 and ay =

√
3a0. G1, G2 and G3 denote the directions of

the three reciprocal lattice vectors (RLV). The third reciprocal lattice direction G3 is equivalent to the
direction G2, even in presence of the walls.

lattice which melts below ηm = .706. Elastic constants of bulk hard disks have been calculated

in simulations[71, 136]. The surface free energy of the hard disk system in contact with a hard

wall has also been obtained[137] taking care that the dimensions of the system are compatible

with a strain-free triangular lattice.

Consider a narrow channel in two dimensions of width Ly defined by hard walls at y = 0 and

Ly (Vwall(y) = 0 for d/2 < y < Ly − d/2 and = ∞ otherwise) and length Lx with Lx � Ly.

Periodic boundary conditions are assumed in the x direction(Fig.5.1). In order that the channel

may accommodate nl layers of a homogeneous, triangular lattice with lattice parameter a0 of

hard disks of diameter d, (Fig.5.7) one needs,

Ly =

√
3

2
(nl − 1)a0 + d (5.1)

For a system of constant number of particles and Ly, a0 is decided by the packing fraction η

alone. Note that Lx = nxa0 = Na0/nl, and a0 is given by ρ = N/LxLy. This gives

a0 =

−d
nl

+
√

d2

n2
l

+ 2
√

3(1 − 1
nl

)1
ρ√

3(1 − 1
nl

)
. (5.2)

Defining χ(η, Ly) = 1 + 2(Ly − d)/
√

3a0, the above condition reads χ = integer = nl and

violation of Eqn.(5.1) implies a rectangular strain away from the reference triangular lattice of

nl layers. The lattice parameters of a centered rectangular (CR) unit cell are ax and ay (Fig.

5.1). In general, for a CR lattice with given Ly we have, ay = 2(Ly − d)/(nl − 1) and, ignoring

vacancies, ax = 2/ρay.
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Figure 5.2: A plot of internal strain εd as a function of external strain ε. The jumps in εd

corresponds to half-integral values of χ.

Calculation of the deformation strain needs some care at this stage. Using the initial triangular

solid (packing fraction η0) as reference, the “external” strain associated with changing Lx, while

keeping N and Ly fixed, is ε = (Lx − L0
x)/L

0
x = (η0 − η)/η where η is the packing fraction of

the deformed solid and η = Nπd2/4LyLx. Internally, the solid is, however, free to adjust nl to

decrease its energy (strain). Therefore, one needs to calculate strains with respect to a reference,

distortion-free, triangular lattice at η. Using the definition εd = εxx− εyy = (ax −a0)/a0− (ay −√
3a0)/

√
3a0 = ax/a0 − ay/

√
3a0 and the expressions ax = 2/ρay, ay = 2(Ly − d)/(nl − 1),

a0 = 2(Ly − d)/
√

3(χ − 1) we obtain,

εd =
nl − 1

χ − 1
− χ − 1

nl − 1
, (5.3)

where the number of layers nl is the nearest integer to χ so that εd has a discontinuity at half -

integral values of χ. For large Ly this discontinuity and εd itself vanishes as 1/Ly for all η. This

“internal” strain εd is related non-linearly to ε and may remain small even if ε is large (Fig.5.2).

Note that any pair of variables η and Ly (or alternately ε and χ) uniquely fixes the state of the

system.

5.2 Structures and Phases

The different possibilities of structures and phases along with their typical structure factors are

presented in this section.
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1
2

Figure 5.3: Solid: Left panel shows an picture of 103 overlapped configurations of a high densitiy
(η = .85) solid phase with wall to wall separation commensurate with the density. The color code is such
that red means high local density and blue means low density. The right panel shows the corresponding
structure factor which shows the typical pattern for a two dimensional hexagonal solid.

If the separation between the hard walls is kept commensurate such that χ = nl, some integer

number of layers then the equilibrium phase is a perfect two dimensional triangular solid (Fig.5.3).

The solid shows a diffraction pattern which is typical of a two dimensional trangular crystal. We

show later that appearances can be deceptive, however. This triangular “solid” is shown to have

zero shear modulus which would mean that it can flow without resistance along the length of the

channel like a liquid. Stretching the solid strip lengthwise, on the other hand, costs energy and is

resisted. The strength of the diffraction peaks decreases rapidly with the order of the diffraction.

In strictly two dimensions this is governed by a nonuniversal exponent dependent on the elastic

constants [62]. In Q1D this decay should be faster but larger system sizes and averaging over a

large number of configurations would be required to observe this decay since contraints placed by

the hard walls makes the system slow to equilibriate at high densities. We return to this question

in section VI.

As discussed in the earlier section, even a small incommensuration due to the confining walls in

Q1D immediately introduces elongational asymmetry to local density profiles along the confining

directions. As a result of this, a nonzero elongational stress is induced in the system. This

causes the two diffraction spots corresponding to planes parallel to the hard walls to strengthen

at the cost of the other four spots in the smallest reciprocal lattice set. This increases the one

dimensional character of the system even further.

A little extra space introduced between the walls starting from a high density solid phase gives

rise to buckling instability in y- direction and the system breaks into triangular solid regions along
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Figure 5.4: Buckled phase: A small incommensuration of wall to wall separation introduced via
a small increase in it from a separation that is commensurate with a high density triangular solid at
η = 0.89 gives rise to this phase. Increase in channel width reduces the density to η = 0.85. The left
panel shows the picture corresponding to 103 overlapped equilibrium configurations. The color code for
the local denisties are same as before. Note different portions of triangular solid separated in x- direction
are displaced along y- direction to span the extra space introduced between the walls. Lines are drawn
to identify this shift in triangular regions. The right panel shows the corresponding structure factor
which has the peak in G1 direction diminished. Some extra weak peaks corresponding to superlattice
reflections appear at lower values of the wavenumber.

the x- direction (Fig.5.4). Each of these regions fluctuate with respect to the other in y- direction

giving the impression of a buckling wave travelling along the length of the solid. In conformity

with the two dimensional analog [118–120] we call this the buckled solid and it interpolates

continuously from χ = nl to nl ± 1 layers. This phase can also occur due to the introduction of

a compressional strain in x-direction keeping Ly fixed. We do not observe the buckled solid at

low densities close to the freezing transition. Extreme incommensuration at such densities lead

to creation of bands of the smectic phase within a solid eventually causing the solid to melt (see

next section). The diffraction pattern shows a considerable weakening of the spots corresponding

to planes parallel to the walls, together with an extra spot at smaller wavenumber corresponding

to the buckled superlattice. The diffraction pattern is therefore almost complementary to that of

the smectic phase to be discussed below.

At low enough densities or high enough incommensuration the elongated density profiles in the

lattice planes parallel to the walls can overlap to give rise to a smectic phase (Fig.5.5) in which

local denity peaks are completely smeared out in x- direction but are clearly seperated in y-

direction giving rise to a solid like order in that direction and making the system liquid like in x-

direction. The diffraction pattern shows two spots which is typical corresponding to the symmetry

of a smectic phase.
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Figure 5.5: Smectic: The left panel shows the picture of 103 equilibrium configurations. The color
code for local density is same as before. The middle panel shows the density modulation in y- direction
in a typical smectic phase which is solid like in a direction perpendicular to the walls (G1 direction)
and liquid like in the other direction. A fact coroborated by solid- like peak in G1 direction in structure
factor plotted in right hand panel. This is at a packing fraction η = 0.73 obtained the straining a
triangular lattice at η = 0.85 in x- direction.

At further lower densities the relative Lindeman parameter, a quantity which measures the rel-

ative displacement fluctuations between neighbours (will be defined in following section) diverges

and the structure factor shows a ring- like feature typical of a liquid appears together with the

smectic like peaks in G1 direction. This is a modulated liquid (Fig.5.6). The density modulation

decays away from the walls and in channels with larger widths, the density profile in the middle

of the channel becomes uniform.

5.3 Mechanical Properties and Failure

A bulk solid, strained beyond it’s critical limit, fails by the nucleation and growth of cracks[138–

141]. The interaction of dislocations or zones of plastic deformation[141, 142] with the growing

crack tip determines the failure mechanism viz. either ductile or brittle fracture. Studies of

the fracture of single-walled carbon nanotubes[143, 144](SWCNT) also show failure driven by

bond-breaking which produces nano cracks which run along the tube circumference leading to

brittle fracture. Thin nano-wires of Ni are known[145, 146], on the other hand, to show ductile

failure with extensive plastic flow and amorphization.

In this section we shall present our results for the mechanical behaviour and failure of the Q1D

solid under tension. As mentioned earlier, we show that the Q1D solid behaves anomalously,

showing a reversible plastic deformation and failure in the constant extension ensemble. The

failure occurs by the nucleation and growth of smectic regions which occur as distinct bands

spanning the width of the solid strip.

We study the effects of strain on the hard disk triangular solid at fixed Ly large enough to
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Figure 5.6: Modulated liquid: The upper panel shows the picture of 103 equilibrium configurations.
Local denisties are coded in the same color code as before. The lower left hand panel shows the density
modulation in y- direction which is like the smectic phase but the modulation dies out at the centre.
The structure factor in right hand panel shows a ring structure which is a typical signature of liquid
superimposed on smectic- like strong peaks in G1 direction. This is the signature of a modulated liquid.
This behaviour is found at a packing fraction η = 0.6 obtained the straining a triangular lattice at
η = 0.85 in x- direction.

accommodate a small number of layers nl ∼ 9 − 25. We monitor the Lindemann parameter

l =< (ux
i − ux

j)
2 > /a2

x+ < (uy
i − uy

j)
2 > /a2

y

where the angular brackets denote averages over configurations, i and j are nearest neighbors

and uα
i is the α-th component of the displacement of particle i from it’s mean position. The

parameter l diverges at the melting transition [147]. We also measure the structure factor

ρG =

∣

∣

∣

∣

∣

〈

1

N2

N
∑

j,k=1

exp(−iG.rjk)

〉
∣

∣

∣

∣

∣

,

for G = ±G1(η), the reciprocal lattice vector (RLV) corresponding to the set of close-packed

lattice planes of the CR lattice perpendicular to the wall, and ±G2(η) the four equivalent RLVs
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Figure 5.7: Results of NVT ensemble Monte Carlo (MC) simulations of N = nx × ny = 65 × 10
hard disks confined between two parallel hard walls separated by a distance Ly = 9 d. For each η,
the system was equilibrated over 106 MC steps (MCS) and data averaged over a further 106 MCS. At
η = 0.85 we have a strain free triangular lattice. Plots show the structure factors ρGi

, i = 1(+), 2(�)
for RLVs Gi(η), averaged over symmetry related directions, as a function of η. Also plotted in the same
graph is the Lindemann parameter l(�). The lines in the figure are a guide to the eye. Inset shows the
geometry used, the reciprocal lattice vectors (RLVs)G1 and G2 and the CR unit cell.

for close-packed planes at an angle (= π/3 and 2π/3 in the triangular lattice) to the wall (see

Fig.5.1). Notice that ±G2(η) and ±G2(η) as shown Fig.5.1 in are equivalent directions.

Throughout, ρG2
< ρG1

6= 0, a consequence of the hard wall constraint[137] which manifests

as an oblate anisotropy of the local density peaks in the solid off from commensuration. As η is

decreased both ρG1
and ρG2

show a jump at η = ηc1 where χ = χ∗ ≈ nl−1/2 (Fig. 5.8 (inset)).

For η < ηc1 we get ρG2
= 0 with ρG1

6= 0 signifying a transition from crystalline to smectic

like order. The Lindemann parameter l remains zero and diverges only below η = ηc3(≈ ηm)

indicating a finite-size- broadened melting of the smectic to a modulated liquid phase. The

stress, σ = σxx − σyy, versus strain, ε, curve is shown in Fig. 5.8. For η = η0 (ε = 0) the

stress is purely hydrostatic with σxx = σyy as expected. At this point the system is perfectly

commensurate with channel width and the local density profiles are circularly symmetric. Initially,

the stress increases linearly, flattening out at the onset of plastic behavior at η
<∼ ηc1 . At ηc1,

with the nucleation of smectic bands, σ decreases and eventually becomes negative. At ηc2 the

smectic phase spans the entire system and σ is minimum. On further decrease in η towards ηc3

, σ approaches 0 from below (Fig. 5.8) thus forming a Van der Waals loop. If the strain is

reversed by increasing η back to η0 the entire stress-strain curve is traced back with no remnant

stress at η = η0 showing that the plastic region is reversible. For the system shown in Figs.5.7

and 5.8, we obtained ηc1 ≈ .77, ηc2 ≈ .74 and ηc3 ≈ .7. As Ly is increased, ηc1 merges with ηc3

for nl
>∼ 25. If instead, Lx and Ly are both rescaled to keep χ = nl fixed or periodic boundary
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Figure 5.8: A plot of the conjugate stress σ versus external strain ε obtained from our MC sim-
ulations of 65 × 10 hard disks initially at η = 0.85. Data is obtained by equilibrating at each strain
value for 2 × 104 MCS and averaging over a further 3 × 104 MCS. The stress for the hard disk system
has been calculated by the standard method[102]. The entire cycle of increasing ε(�) and decreasing to
zero (+) using typical parameters appropriate for an atomic system, corresponds to a real frequency of
ω ≈ 100KHz. Results do not essentially change for ω = 10KHz − 1MHz. Inset shows the variation
of the critical χ∗ with nl, points: simulation data; line: χ∗ = nl − 1/2.

conditions are imposed in both x and y directions, the transitions in the various quantities occur

approximately simultaneously as expected in the bulk system. Varying nx in the range 10− 1000

produces no essential change in results.

For ηc2 < η < ηc1 we observe that the smectic order appears within narrow bands (Fig. 5.9).

Inside these bands the number of layers is less by one and the system in this range of η is in a

mixed phase. A plot (Fig.5.9 (a) and (b)) of χ(x, t), where we treat χ as a space and time (MCS)

dependent “order parameter” (configuration averaged number of layers over a window in x and

t), shows bands in which χ is less by one compared to the crystalline regions. Once nucleated

narrow bands coalesce to form wider bands, the dynamics of which is, however, extremely slow.

The total size of such bands grow as η is decreased. Calculated diffraction patterns (Fig. 5.9 (c)

and (d)) show that, locally, within a smectic band ρG1
� ρG2

in contrast to the solid region

where ρG1
≈ ρG2

6= 0.

The total free energy per unit volume of a homogeneous solid, F T , which is in contact with a

hard wall and distorted with a (small) strain εd is given by,

FT (η, χ) = −ρ ln vf(η, χ)

' 1

2
K∆(η)ε2

d(χ) + F∆(η) (5.4)
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Figure 5.9: Plot of χ(x, t) as a function of the x/d at η = .76 after time t = (a)5 × 105 and
(b)2 × 106 MCS for N = 103 × 10. Note that χ = 10 in the solid and = 9 in the smectic regions.
Arrows show the coalescence of two bands as a function of time. Calculated diffraction patterns for the
(c) solid and (d) smectic regions. (e) Close up view of a crystal-smectic interface from superimposed
positions of 103 configurations at η = .77. The colors code the local density of points from red/dark
(high) to blue/light (low). Note the misfit dislocation in the inter-facial region.

where K∆(η) is an elastic constant and F∆(η) the free energy of the (undistorted) triangular

lattice in contact with a hard wall[137] at packing fraction η. The “fixed neighbor” free volume

vf (η, χ) may be obtained using straight forward, though rather tedious, geometrical considerations

so that F∆(η) = −kBTρ log vf (η, 0) and K∆(η) = ∂2F∆(η, εd)/∂ε2
d|εd=0 (see Fig.5.8). vf is

expressed in units of d2. In fixed neighbour free volume theory (FNFVT), we think of a single

disk moving in a fixed cage formed by taking the average positions of its six nearest neighbor

disks [ see Fig. (5.10) ]. The free volume available to this central particle is given entirely

by the lattice separations b (= AQ) and h (See Fig.5.10). Note that, b = a0(1 + εxx) and

h =
√

3(1 + εyy)/2 where a0 is lattice parameter of a triangular lattice at any given packing

fraction η and εxx = (nl −1)/(χ−1), εyy = (χ−1)/(nl−1). As stated in Sec.5.1, χ is obtained
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Figure 5.10: In our free-volume theory we assume that the outer six disks are fixed and the central
disk moves within this cage of fixed particles. The curve in bold line shows the boundary B of the free
volume. A point on this boundary is denoted by P0(x, y) while the centers of the six fixed disks are
denoted by Pi(xi, yi) with i = 1, 2...6.

from channel width Ly and packing fraction η. vf is the area enclosed by the boundary B in

Fig.5.10. In calculating the free volume we have assumed the geometry of the free volume to

be close to hexagonal (Fig.5.10). For small strains (within 6%) around a triangular lattice this

assumption is valid. However, for large strains the free volume area goes over to a rhombic shape.

At these points our theory fails. It is clear that F T has minima for all χ = nl. For half integral

values of χ the homogeneous crystal is locally unstable. The FNFVT fails also at these points.

This same FNFVT free energy for solid is used in Sec.5.5 to calculate the phase diagram of this

confined system.

Noting that, χ∗ = nl − 1/2 (Fig. 5.8 inset), it follows from Eqn. 5.3, the critical strain

ε∗d = (4nl − 5)/(2nl − 3)(2nl − 2) ∼ 1/nl which is supported by our simulation data over the

range 9 < nl < 14. At these strains the solid generates bands consisting of regions with one less

atomic layer. Within these bands adjacent local density peaks of the ‘atom’s overlap in the x

direction producing a smectic. Indeed, the overlap maybe calculated approximately using simple

density functional arguments[148] to be ∆ ≡
√

< u2
x >/ax = (χ−1)/4π

√

C0ρG2(nl−1) (where

C0, direct correlation function for a hard disk uniform liquid, is a constant of order unity) which,

evidently, diverges as ρG2
→ 0 (see Sec.5.5). Note that at χ = χ∗ the term (χ−1)/(nl −1) and

hence the overlap shows a jump discontinuity even before ρG2
→ 0. In Fig.5.11 this overlap term

has been plotted as a function of strain ε imparted on a ten layered solid. Fig.5.11 shows that

the overlap ∆ undergoes a jump increase of around 150% at ε ∼ 0.1 and reaches its highest value
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Figure 5.11: Values of ρG2 , χ and nl have been calculated from the same simulation which is used
in plotting Fig.5.7. C0 has been set to one in calculating density profile overlap ∆ at each strain value
ε.

at ε ∼ 0.15 as the smectic phase spans the whole system. At further higher strain this overlap

decreases with melting of the smectic into fluid phase. This observation further vindicates the

phase demarcation in Fig.5.8. For large Ly, the failure strain ε∗d reduces significantly to wash

out the difference in maxima and minima in free energy, therefore, the minima in F T merge to

produce a smooth free energy surface independent of χ and more conventional modes of failure,

viz. cracks, are expected to become operative.

For small Ly all regions of the parameter space corresponding to non-integral χ are also globally

unstable as belied by the loop in the stress-strain curve (Fig.5.8). The system should therefore

break up into regions with nl and nl−1 layers for infinitesimal εd. Such fluctuations are, however,

kinetically suppressed as we argue below. A superposition of many particle positions near such

an interface (see Fig. 5.9(e)) shows that: (1) The width of the interface is large, spanning about

10−15 atomic spacings and the interface is wet by a buckling phase made up of triangular groups

of nine- layered solid shifted in a direction normal to the walls. (2) The interface between nl

layered crystal and nl − 1 layered smectic contains a dislocation 1with Burger’s vector in the

y- direction which makes up for the difference in the number of layers. Each band of width s is

therefore held in place by a dislocation-anti-dislocation pair (Fig. 5.9). In analogy with classical

nucleation theory[148, 149], the free energy Fb of a single band can be written as

Fb = −δFs + Ec +
1

8π
b2K∆ log

s

a0
(5.5)

1A comparison of Fig. 5.9 (e) with Fig. 1 of Ref.[117] leads us to speculate whether a two-dimensional
version of the “buckled” phase may in-fact wet the solid-smectic interface thereby reducing its energy.
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Figure 5.12: Dislocation probabilities of a 65 × 10 system are plotted as a function of strain
starting from a solid commensurate with the interwall spacing Ly. The + symbols denote dislocation
probabilities for only those Burger’s vectors which have components perpendicular to the walls. The
corresponding bond-breaking moves are of the type depicted by the uppermost plot in the inset panel.
Arrows show the directions of the bond-breaking moves. On the other hand ∗ symbols denote other
dislocation probabilities corresponding to the other two types of moves shown in the inset.

where b = ay/2 is the Burger’s vector, δF the free energy difference between the crystal and the

smectic per unit length and Ec the core energy for a dislocation pair. Bands form when dislocation

pairs separated by s > 1
8π

b2K∆/δF arise due to random fluctuations. To produce a dislocation

pair a large energy barrier of core energy Ec has to be overcome. Though even for very small

strains εd the free energy FT becomes unstable the random fluctuations can not overcome this

large energy barrier within finite time scales thereby suppressing the production of nl − 1 layered

smectic bands up to the point of ε∗d. In principle, if one could wait for truely infinite times the

fluctuations can produce such dislocation pairs for any non-zero εd though the probability for such

productions exp(−βEc) are indeed very low. Using a procedure similar to that used in Ref.[71],

we have monitored the dislocation probability as a function of η (Fig.5.12). Not surprisingly, the

probability of obtaining dislocation pairs with the relevant Burger’s vector increases dramatically

as η → ηc1 and artificially removing configurations with such dislocations suppresses the transition

completely. Band coalescence occurs by diffusion aided dislocation “climb” which at high density

implies slow kinetics. Due to this diffusive nature the size of smectic band L(t) scales as L ∼
√

t.

Throughout the two-phase region, the crystal is in compression and the smectic in tension along

the y direction so that σ is completely determined by the amount of the co-existing phases;

orientation relationships between the two phases being preserved throughout. Again the amount

of solid or smectic in the system is entirely governed by the strain value ε. This means that for
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a given strain the amount of solid and smectic and therefore the amount of stress σ is entirely

determined by the value of strain. This explains the reversible[150] plastic deformation in Fig.

5.8.

5.4 Mean Field Results: The Reversible Failure Transition

The failure of a commensurate solid under tensile strain imposed in the manner discussed in

the previous section, comes about through the nucleation of smectic bands within the solid.

Monte-Carlo simulations show, at half-integral χ where the local internal strain εd becomes

discontinuous, ρ(r) at nearest neighbour sites overlap along the x-direction, parallel to the walls,

generating smectic bands. The stress associated with εd vanishes at these points and the solid fails

under tension. In this section we shall show, using simple density functional[148, 151] arguments,

that the phase transition and the consequent tensile failure (a smectic cannot support stress

parallel to the smectic layers) is brought about by this overlap in the local density. Since

mechanical failure in our system is a consequence of a phase transition, it is reversible — as

the strain is reduced back to zero, the stress also vanishes and the perfect triangular lattice is

recovered[152].

Within density functional theory[151], the excess grand potential of a non-uniform liquid con-

taining a density modulation ρ(r) over the uniform liquid of density ρl is given by,

∆Ω

kBT
=

∫

dr[ρ(r) log(ρ(r)/ρl) − δρ(r)]

−1

2

∫

dr′C(|r − r′|)δρ(r)δρ(r′). (5.6)

Here δρ(r) = ρ(r) − ρl and C(r) is the direct correlation function of the uniform liquid[109].

A functional minimization of the free energy yeilds the following self-consistency equation for the

density:

ρ(r)

ρl
= exp[

∫

dr′C(|r− r′|)δρ(r′)] (5.7)

In principle one should solve the above equation within the constraints imposed by the walls

and obtain the equilibrium ρ(r). Substitution of this ρ(r) into Eqn.5.6 gives the equilibrium free

energy and phase transitions. While we intend to carry out this procedure in the future, we must

point out that for the present problem, this is complicated by surface terms and anisotropic,

external, fields which are difficult to incorporate. In this chapter we shall take a much simpler

route in exploring the various conditions for the solid -smectic transition given the nature of the

ρGi
(the order parameters) obtained from our simulations.
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One may expand, therefore, the logarithm of the local density profile log ρ(r) in a Fourier

series[148] around a lattice point at the origin, to get,

ρ(r) = N exp

(

2C0

3
∑

i=1

ρGi
cos(Gi.r)

)

(5.8)

where C0 is a constant, of order unity, denoting the Fourier transform of the direct correlation

function calculated at a q-vector corresponding to the smallest RLV set of the solid. We have

kept contributions only from this set.

For a perfect triangular lattice, the RLV’s are G1 = ŷ 2π
dy

, G2 = x̂2π
dy

cos(π
6
) + ŷ 2π

dy
sin(π

6
) and

G3 = x̂ 2π
dy

cos(π
6
) − ŷ 2π

dy
sin(π

6
), where dy =

√
3

2
a0. Using these relations and the fact that in

the presence of confining walls the Fourier amplitudes denoting solid order are virtually constant

upto the transition and ρG2
= ρG3

6= ρG1
, Eqn.5.8 gives [153],

ρ(r) = N exp{C0(2ρG1
+ 4ρG2

)} exp

(

−1

2
C0

(

2π

dy

)2
{

(2ρG1
+ ρG2

)y2 + 3ρG2
x2
}

)

(5.9)

Clearly the density profile is Gaussian, of the form, ρ(r) ∼ exp(−y2/2σ2
y − x2/2σ2

x). Therefore,

the spreads of density profile in x and y-directions are given by σx and σy respectively, with

σ2
x =

1

C0

(

dy

2π

)2
1

3ρG2

(5.10)

σ2
y =

1

C0

(

dy

2π

)2
1

2ρG1
+ ρG2

. (5.11)

In the absence of walls, ρG1
= ρG2

making σx = σy, i.e. the density profile comes out

to be symmetric in both directions, as expected for the bulk triangular solid. The presence of

walls make σy < σx making the density profile elliptical with larger spread in x-direction, the

direction parallel to the walls. Two neighbouring density profiles will overlap to form a smectic

if σx > ax. This leads us to the definition of a measure of overlap Ol = (σx/ax). The condition

Ol > 1 is then the Lindemann criterion for nucleation of the smectic phase. Remembering

ax = a0(nl − 1)/(χ − 1), we get,

Ol =
1

4π

1
√

C0ρG2

χ − 1

nl − 1
. (5.12)

Whenever, ρG2
→ 0 i.e. with the loss of solid order Ol diverges although σy remains finite,

since ρG1
6= 0 in presence of the walls. This indicates a solid-smectic transition. However, even

before ρG2
→ 0 the quantity ∆ = χ−1

nl−1
and therefore Ol shows large jumps at those internal

strain (εd) values where χ becomes half-integer. It is interesting to note that, at these points

εd has discontinuities and the system fails[152]. This shows that the mode of failure predicted
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Figure 5.13: For a 10-layered solid with Ly commensurate with the initial strainless triangular
structure at η = .85 overlap term ∆ is plotted as a function of external strain ε. Density profile overlap
shows a jump increase at strains ε > .1, the failure strain value[152].

by our theory is through a solid-smectic transition. The fact that ρG1
remains non-zero even at

very small densities, due to the confinement from the walls, gives rise to the density modulations

in the confined liquid.

We have shown therefore that the overlap in the density profiles may be used as an “order

parameter” for the solid to smectic transition. We show below that jumps in this order parameter

tantamounts to mechanical failure of the solid.

We begin with studying the overlap ∆ as a function of external strain ε. For specificity,

we start from a triangular solid of packing fraction η = .85 with Ly commensurate with a

nl = 10 layered solid. With increasing strain initially the overlap ∆ reduces due to increased

separation (ax) between neighbouring lattice points. But above a strain (ε) of about 10%, χ

reaches the half-integral mark and ∆ shows a discontinuous increase, indicating large overlap

between neighbouring density profiles along the wall ; indicating a solid to smectic transition

(Fig.5.13) at the failure strain ε∗. With further increase in strain the overlap reduces, again due

to increased separation between neighbouring lattice points. At higher strains the smectic melts

into a modulated liquid due to increased fluctuations connected with the reduced density[152].

We have performed this calculation for various Ly values commensurate with starting triangular

solids of nl = 2, 3 . . . 20 layers at packing fraction η = .85. We found out the failure strains ε∗

at each Ly and plotted them in Fig.5.14 as a function of Ly. This clearly shows that the failure

strain reduces with increase in Ly. This demonstrates the fact, derived earlier from Monte-Carlo

simulations[152], that thinner (smaller Ly) strips are stronger!
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Figure 5.14: Failure strains ε∗ for various interwall separations Ly confining nl = 2 → 20 layered
triangular strips at η = .85 is plotted. Failure strain decreases with increase in Ly.

In Fig.5.15 we have plotted the overlap term ∆ with increasing interwall separation Ly at

η = .85. The jumps, as usual, indicate failure strains corresponding to discontinuities in the

internal strain εd at half-integral values of χ. The plot shows that the amount of overlap at

the failure strains ε∗ reduces with increasing Ly indicating that at large interwall separations the

system starts to behave as a bulk solid and more conventional modes of failure viz. through

formation and interaction of cracks and twin boundaries starts becoming active.

5.5 Mean Field Results: The Equilibrium Phase Diagram

We now calculate the equilibrium phase diagram of the confined two dimensional system in η−Ly

plane. For this purpose we utilise the usual common tangent construction method to extract the

phase diagram in the canonical ensemble from the free energies of the solid and fluid, the only

two unambiguous stable phases of hard disk system in thermodynamic limit. Our computation

will, evidently, ignore the other possible phases like smectic and modulating liquid. Physically,

confinement always induces density modulations and therefore in phase diagram we understand

that the liquid is always a modulated liquid for small channel widths. The phenomenological

equation of state due to Santos et. al.[154] agrees with bulk fluid simulations of hard disks. The

corresponding excess free energy per particle is

FSan =
(2ηc − 1) log

(

1 − (2ηc − 1) η
ηc

)

− log(1 − η
ηc

)

2(1 − ηc)
, (5.13)
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Figure 5.15: Overlap ∆ is plotted for a system at η = .85 with changing interwall separation Ly.
Amount of smectic overlaps ∆ at failures reduces with increasing Ly.

ηc being the packing fraction of hard disk solid at close-packed limit. The total free energy of

the fluid will have, moreover, a contribution of free particle free energy per particle (log ρ − 1).

Then the fluid free energy per unit volume becomes FF l = ρ(FSan + log ρ − 1). To incorporate

the effect of structureless walls on the fluid we have incorporated the surface tension of a hard

disk fluid obtained from scaled particle theory (SPT) [137],

γ
Fl

= − η

2(1 − η)2
ρd +

1

2
βPd (5.14)

where the pressure is given by [154]

βP

ρ
=

(

1 − 2η +

(

η

ηc

)2

(2ηc − 1)

)−1

(5.15)

Then the liquid free energy per unit volume becomes FF l = ρ(FSan + log ρ − 1) + γ
Fl

/Ly.

We calculate the solid free energy of hard disk system from free volume theory. The surface

tension of solid in presence of walls is given by[137]

γ
Cr

=
1√
3

d

a(a − d)

(

1 −
√

3

2

)

. (5.16)

Hence the solid free energy per unit volume is FCr = FT (η, χ)+γ
Cr

/Ly. FT (η, χ) is the FNFVT

free energy as described in Sec.5.3. For every wall to wall separation Ly we vary the packing

fraction η and pick up the smaller free energy at each η to obtain F = min(FCr , FF l) in Fig.5.16.
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Figure 5.16: Plot of free energy used for constructing the phase diagram. The dotted curve, dashed
curve and solid curve denote FF l, FCr and F respectively.

Then we use common tangent construction over this free energy F to obtain densities of

coexisting phases at equal chemical potential. Within this theory, at densities lower than the

coexisting fluid density the thermodynamic phase is stable fluid and at densities higher than the

coexisting solid density it is stable solid. At intermediate densities fluid and solid coexist. The

corresponding phase diagram is given in Fig.5.17.

From the phase diagram it is evident that solid phase at lower density gets more and more

instable as we increase the wall to wall separation. If we start with solids commensurate with

Ly, i.e. χ = nl at packing fraction η = .85 and start reducing η keeping Ly fixed, we can find

out from the phase diagram the deviatoric strains at which one hits the two-phase boundary as

well as the strains where one reaches at half-integral values of χ. These have been plotted in

Fig.5.18.

Both the quantities show a decrease in failure strain ε∗d with increase in width of the strip

Ly supporting the simulation result, narrower strips are stronger. Our simple theory therefore

predicts a first order solid-fluid transition as a function of εd and failure of the solid as the density

enters the region of solid-fluid coexistence at larger critical strain ε∗d for smaller wall to wall

separations. However, details like the density modulation, effects of asymmetry in density profile,

vanishing displacement modes at the walls and most importantly nucleation and dynamics of

misfit dislocations crucial to generate the smectic band mediated failure observed in simulations

are beyond the scope of this theory. Also, the effect of kinetic constraints which stabilize the solid

phase well inside the equilibrium two phase coexistence region is not captured in this approach.

We believe, nevertheless that this equilibrium calculation may be used as a basis for computations

of reaction rates for addressing dynamical questions in the future.
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Figure 5.17: Phase diagram. White region denotes solid phase. The darkest region at high densities
denote regions of phase space inaccessible to the system due to overlapping hard disks. The aqua green
region at low densities denote fluid phase. All other regions are two phase coexistence regions.The blue
dashed lines denote χ = nl and the green dashed lines denote half integral χ.

5.6 Fluctuations and Destruction of Order

One of the key definitions of a solid states that a solid, as opposed to a liquid, is a substance

which can retain its shape due to its nonzero shear modulus. Going by this definition, a Q1D

solid confined within planar, structureless walls is not a solid despite its rather striking triangular

crystalline order as well as an apparently solid- like structure factor. Indeed, the shear modulus of

the confined solid at η = 0.85 is zero, though the corresponding system with periodic boundary

condition show large shear modulus (See Fig.5.19). This is a curious result and is generally true

for all values of 4 < nl < 25 and η investigated by us.

To understand the nature and amount of fluctuations in the confined Q1D system we calculate

correlation between displacement fields along the channel, < (ux(x) − ux(0))2 > for a layer of

particles near a boundary. The nature of the equilibrium displacement correlations ultimately

determines the decay of the peak amplitudes of the structure factor and the value of the equi-

librium elastic moduli [148]. In one dimension < (ux(x) − ux(0))2 >∼ x and in two dimensions
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Figure 5.18: The data points denoted by ∗ show the deviatoric strain values at which χ = n l−1/2
whereas the symbols + denote the arrival of two phase coexistance, i.e. failure predicted by this theory.
Lines are guide to eye. Data have been extracted from Fig.5.17.

< (ux(x) − ux(0))2 >∼ ln(x). In the Q1D system it is expected that for small distances, dis-

placement fluctuations will grow logarithmically with distance which will crossover to a linear

growth at large distances [155, 156]. We calculate this quantity averaged over 10, 30, 50, 100

configurations equlibrated over 105 Monte- Carlo (MC) steps and separated by 103 MC steps.

We compare the results obtained from a 5000 × 10 hard diks solid at η = 0.75 with periodic

boundary conditions (PBCs) and with hard channel confinement (Fig.5.20). The structure factor

for this system is apparently solid like with prominent triangular order. The shear modulus is

vanishingly small for the confined system and non- zero for a system with PBCs. We calculate

fluctuations averaged over 10, 30, 50, 100 configurations equlibrated over 105 Monte- Carlo

(MC) steps and separated by 103 MC steps. The fluctuation of displacement field for the system

with PBC reduces and converges with the increase in number of configurations over which aver-

agings are done. However, for the confined solid displacement fluctuations continue to increase

with number of configurations over which the averaging is done. This clearly shows that as soon

as a solid gets confined, even if the confinement length scale is commensurate with that set by

the system density, the solid starts to behave like a liquid with zero shear modulus and linearly

increasing displacement correlations. Density modulations introduced by the hard walls seems to

destabilize long ranged order in the small channel. This is reminiscent of large potential strength

limit of laser induced transitions [89, 94, 157] as discussed in the last chapter. However, when

we compare the results obtained from a 5000 × 10 hard disks solid at η = 0.85 with PBCs and

hard channel confinement (Fig.5.21) we obtain a different result. Fig.5.21 clearly shows that with
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Figure 5.19: Shear stress vs. shear strain at η = 0.85. A system of 43×50 2D hard disks simulated
with periodic boundary conditions gives a shear modulus µ = 393.42 with an error within 1%. On the
other hand when a 40 × 10 triangular lattice of hard disks is confined within a commensurate channel,
that fits 10-layers of lattice planes, the shear modulus drops drastically to µ = 0!

increase in number of configurations over which the averagings are done, fluctuation reduce and

converge to a small number. This is consistent with the solid like structure factor but inconsis-

tent with the vanishing shear modulus of confined system. This result is particularly surprising

since it can be shown[155] that all Q1D solids whether with PBCs or not and for any density

η would have displacement correlations which increase linearly with system length. The exact

value of this crossover length has nonuniversal prefactors which depend on boundary conditions,

density, nature of interactions etc. If the crossover length turns out to be larger than the system

size, then this increase will not be observed and the properties of the system will be anomalous

and inconsistent. The fact that displacement fluctuations saturate at high densities as seen in

our simulations suggests that this may, in fact, be the reason behind the puzzling behaviour. An

accurate calculation of the crossover length is required to settle this question conclusively – a

task which is non-trivial due to the nonuniversal nature of this number.

A separate calculation of Young’s moduli (response to elongational strain) on a commensurate

40 × 10 hard disk confined solid at η = 0.85 shows that Yx = 1361 and Yy = 1503 within 3%

error. Young modulus in the longitudinal direction is smaller than that in the direction transverse

to the confinement and both these values are larger than the Young modulus of the system under

PBC (Y = 1350). This implies that the non-hydrodynamic component of the stress σxx − σyy

is non-zero for non zero strains as shown in Fig.5.8. Therefore even if we choose to regard this

Q1D solid as a liquid, it is quite anomalous since it trivially violates Pascal’s law which states

that the stress tensor in a liquid is always proportional to the identity! Lastly, commensurability
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Figure 5.20: < (ux(x)− ux(0))2 > /d2 fluctuations within a single lattice plane (line) is averaged
over equilibrated configurations of 5000 × 10 system of hard disks at η = 0.75 and simulation box
dimensions which are commensurate with the lattie parameter of the bulk (unconfined) system. The
upper panel shows the case for a system with periodic boundary condition while the lower panel shows
the same for Q1D confinement using hard walls. For the confined system, fluctuations increase with
increase in the number of configurations over which the displacement correlations are averaged without
showing any sign of convergence. Fluctuations in the system with periodic boundary conditions, on the
other hand, appear to saturate.

seems to affect strongly the nature and magnitude of the displacement fluctuations which increase

dramatically as the system is made incommensurate. Similar behaviour has been recently noticed

by A. Ricci et. al. [155] for a confined soft disk system. They also noticed that the 1D structure

factor of their system showed liquid like behaviour. Here we note that in the work done by A.

Ricci et. al. [155], they used a soft core interaction potential (1/r12) and a soft system- wall
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Figure 5.21: The same quantities as in Fig.5.20 averaged over equilibrated configurations of 5000×
10 system of hard disks at η = 0.85 and a simulation box size that is commensurate with the lattie
parameter of the bulk (unconfined) system. With increase in the number of configurations over which
averaging is done, fluctuations reduce and converge, both for a system with periodic boundary condition
and for the confined system in channel.

potential (1/r10) and studied the shear modulus and structure factor at density ρ = 1.05, very

close to bulk phase transition at kBT = 1. In that system it is difficult to determine whether the

system is commensurate or not, since the long ranged soft wall potential would tend to distort

the triangular lattice so that the equilibrium state would not be a perfect triangular solid. Our

system has the advantage of having much simpler ground states which makes these distinctions

unambiguous.
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5.7 Conclusion

In this chapter we explored some of the strange and anomalous properties of Q1D solids which

are only a few atomic dimensions wide in one direction. We have found that these properties

persist even if the width is increased by a large amount and the approach to bulk behaviour is

slow. The bulk limit is also approached in an oscillating manner with commensurability playing a

very important role.

What impact, if any, do our results have for realistic systems? Apart from constrained hard

sphere colloids[96] where our results are directly testable, a similar fracture mechanism may be

observable in experiments on the deformation of mono-layer nano beams or strips of real materials

provided the confining channel is made of a material which is harder and has a much smaller

atomic size than that of the strip[113, 114]. The effect of elasticity and corrugations of the walls

on the fracture process, as well as it’s dynamics, are interesting directions of future study. The

destruction of long ranged solid like order should be observable in nano wires and tubes and may

lead to fluctuations in transport quantities [158].

In the next chapter we shall study the transport of heat accross a Q1D solid and try to find out

the effect of the reversible failure transition in the heat transport coefficient.
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6 Heat Conduction in Confined Solid

Jose Arcadio Buendia ventured a murmur: “It’s the largest diamond in the

world”. “No”, the gypsy countered, “It’s ice”. – G. G. Márquez

In the previous chapter [152] we have observed that the properties of a solid that is confined

in a narrow channel can change drastically for small changes in applied external strain. This

was related to structural changes at the microscopic level such as a change in the number of

layers of atoms in the confining direction. These effects occur basically as a result of the small

(few atomic layers in one direction) dimensions of the system considered and confinement along

some direction. A similar layering transition, in which the number of smectic layers in a confined

liquid changes discretely as the wall-to-wall separation is increased, was noted in [132, 133].

Both [132, 152] look at equilibrium properties while [133] looks at changes in the dynamical

properties. An interesting question is as to how transport properties, such as electrical and

thermal conductivity, get affected for these nanoscale systems under strain. These questions are

also important to address in view of the current interest in the properties of nanosystems both

from the point of view of fundamentals and applications [20, 159, 160].

In this chapter we consider the effect of strain on the heat current across a two-dimensional

“solid” formed by a few layers of interacting atoms which are confined in a long narrow channel.

We note here that, in the thermodynamic limit it is expected that there can be no true solid

phase in this quasi-one-dimensional system. However for a long but finite channel, which is our

interest here, and at high packing fraction the fluctuations are small and the system behaves like

a solid. We will thus use the word “solid” in this sense.

In previous chapter [152] the anomalous failure, under strain, of a narrow strip of a two

dimensional solid formed by hard disks confined within hard walls [ see Fig. 6.1 ] was studied.

Sharp jumps in the stress-strain were observed. These were related to structural changes in the

system which underwent transitions from solid-to-smectic-to-modulated liquid phases [152, 153].

In the present chapter we study changes in the thermal conductance of this system as it undergoes

elastic deformation and failure through a layering transition caused by external elongational strains

applied in different directions.

The calculation of heat conductivity in a many body system is a difficult problem. The Kubo

formula and Boltzmann kinetic theory provide formal expressions for the thermal conductivity.

93
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a y
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y

a x
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T1
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Figure 6.1: A solid with a triangular lattice structure formed by hard disks confined between two
structureless walls at y = 0 and y = Ly. The walls are maintained at two different temperatures. The
lattice parameters of the unstrained solid are denoted by a0

x and a0
y. Elongational strains can be imposed

by rescaling distances either in the x or y directions and the lattice parameters change to ax and ay.

In practice these are usually difficult to evaluate without making drastic approximations. More

importantly a large number of recent studies [161–164] indicate that the heat conductivity of

low-dimensional systems infact diverge. It is then more sensible to calculate directly the heat

current or the conductance of the system rather than the heat conductivity. In this chapter

we propose a simple-minded calculation of the heat current which can be expected to be good

for a hard disk (or hard spheres in the three dimensional case) system in the solid phase. This

reproduces some qualitative features of the simulations and gives values for the current which

are of the correct order of magnitude.

The organization of this chapter is as follows. In Sec. (6.1) we explain the model and present

the results from simulations. In Sec. (6.2) we derive a simple formula for heat current in a hard-

sphere system and evaluate it approximately. We conclude with some discussions in Sec. (6.3).

6.1 Results from Simulations

We consider a two dimensional system of hard disks of diameter d and mass m which interact with

each other through elastic collisions. The particles are confined within a narrow hard structureless

channel [see Fig. 6.1]. The hard walls of the channel are located at y = 0 and y = Ly and we

take periodic boundary conditions in the x−direction. The length of the channel along the

x−direction is Lx and the area is A = Lx × Ly. The confining walls are maintained at two

different temperatures ( T2 at y = 0 and T1 at y = Ly ) so that the temperature difference
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∆T = T2 − T1 gives rise to a heat current in the y-direction. Initially we start with channel

dimensions L0
x and L0

y such that the system is in a phase corresponding to a unstrained solid with

a triangular lattice structure. We then study the heat current in this system when it is strained

(a) along the x−direction and (b) along the y−direction.

We perform an event-driven collision time dynamics [165] simulation of the hard disk system.

The upper and lower walls are maintained at temperatures T1 = 1 and T2 = 2 (in arbitrary

units) respectively by imposing Maxwell boundary condition [161] at the two confining walls.

This means that whenever a hard disk collides with either the lower or the upper wall it gets

reflected back into the system with a velocity chosen from the distribution

f(~u) =
1√
2π

(

m

kBTW

)3/2

|uy| exp

(

− m~u2

2kBTW

)

(6.1)

where TW is the temperature (T1 or T2) of the wall on which the collision occurs. During

each collision energy is exchanged between the system and the bath. Thus in our molecular

dynamics simulation, the average heat current flowing through the system can be found easily

by computing the net heat loss from the system to the two baths (say Q1 and Q2 respectively)

during a large time interval τ . The steady state heat current from lower to upper bath is given

by 〈I〉 = limt→∞ Q1/τ = − limt→∞ Q2/τ . In the steady state the heat current (the heat flux

density integrated over x) is independent of y. This is a requirement coming from current

conservation. However if the system has inhomogeneities then the flux density itself can have

a spatial dependence and in general we can have j = j(x, y). In our simulations we have also

looked at j(x, 0) and j(x, Ly).

Note that the relevant scales in the problem are: kBT for energy, d for length and τs =
√

md2/kBT for time. We start from a solid commensurate with its wall to wall separation and

follow two different straining protocols. In case (a) we strain the solid by rescaling the length in

the x−direction and the imposed external strain is εxx = (Lx − L0
x)/L

0
x. In case (b) we rescale

the length along the y−direction and the imposed strain is εyy = (Ly − L0
y)/L

0
y.

The only thermodynamically relevant variable for a hard disk system is the packing fraction

η = πNd2/4A. For a close packed solid with periodic boundary condition this value is about ηc =

0.9069. On the other hand for a confined solid having Ny number of layers ηc = πNy/(2
√

3(Ny−
1) + 4) and for a 10- layered solid ηc = 0.893. In our simulations we consider initial values of

η for the solid to be close to ηc. The channel is “mesoscopic” in the sense that it has a small

width with Ny = 10 layers of disks in the y−direction (in the initially unstrained solid). In the

x−direction the system can be big and we consider Nx = 20, 40, 80, 160 number of disks in

the x−direction. In collision time dynamics we perform 105 collisions per particle to reach steady

state and collect data over another 105 collisions per particle. All the currents calculated in this

study are accurate within error bars which are less than 3% of averaged current.
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(a)

(b)

Figure 6.2: Plots obtained by superposition of 500 steady state configurations of a portion of 40×10
system taken at equal time intervals. Starting from η = 0.85 imposition of strains (a) εxx = 0.1, (b)
εxx = 0.15 gives rise to these structures. The colors code local density of points from red/dark (high)
to blue/light (low). In (a) one can see a 9-layered structure nucleated within a 10-layered solid. The
corresponding structure factor identifies this to be a smectic [152]. In (b) the whole system has
transformed into a 9-layered smectic.

Let us briefly recapitulate some of the equilibrium results for stress-strain behavior obtained in

the last chapter. As the strain εxx is imposed, the perfectly triangular solid shows rectangular

distortion along with a linear response in strain versus stress behavior. Above a critical strain

(εxx ≈ 0.1) one finds that smectic bands having a lesser number of layer nucleate within the

solid [this can also be seen in Fig. (2a), which is for a nonequilibrium simulation]. This smectic

is liquid-like in x−direction (parallel to the walls) and has solid-like density modulation order in

y−direction (perpendicular to the walls). With further increase in strain the size of the smectic

region increases and ultimately the whole system goes over to the smectic phase at εxx ≈ 0.15

[Fig. (2b)]. At even higher strains the smectic melts to a modulated liquid [152, 153]. The

modulated liquid shows typical liquid like ring pattern corresponding to average inter- particle

separation above the smectic like 1D density modulation peaks in the structure factor [152, 166].

This layering transition is an effect of finite size in the confining direction. Similar phase behaviors

have been observed in experiments on steel balls confined in quasi 1D [134]. We note that to fit
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Figure 6.3: Plot of jy (in units of kBT/τsd) versus εxx for different lengths of the channel. The
width of the channel is Ny = 10 layers. Starting packing fraction is η = 0.85. The solid line shows the
theoretical prediction of dependence of the heat current on strain [see Sec. (6.2)].

a Ny layered triangular solid within a channel of width Ly we require

Ly =

√
3

2
a0

x(Ny − 1) + d . (6.2)

This enables us to define a fictitious number of layers

χ = 2
Ly − d√

3a
+ 1

of triangular solid that can span the channel where a is the lattice parameter at any given

density. The actual number of layers that are present in the strained solid is Ny = I(χ) where

the function I(χ) gives the integer part of χ. For confined solids the free energy has minima

at integer values of χ and maxima at half-integral values [152, 153]. The difference in free-

energy between succesive maxima and minima gradually decreases with increasing Ly. Thereby

the layering transition washes out for nl
>
= 25 layered unstrained solid[152]. Up to this number

of layers, a triangular solid strip confined between two planar walls fails at a critical deviatoric

strain ε∗d ∼ 1/Ny, i.e. smaller strips fail at a larger deviatoric strain (εd = εxx − εyy).

We now present the heat conduction simulation results for the two cases of straining in x and

y directions.

(a) Strain in x direction - In Fig. 6.3 we plot the heat current density jy calculated at different

values of the strain εxx. Starting from the triangular lattice configuration, we find that the

heat current decreases linearly with increase in strain. At about the critical strain εxx ≈ 0.1 we

find that the heat current begins to fall at a faster rate. This is easy to understand physically.
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Figure 6.4: χ(x) is the local number of layers averaged over 103 steady state configurations for a
system of 40 × 10 hard disks. A starting triangular lattice of η = 0.85 is strained to εxx = 0.118 and
the data collected after steady state set in. Also shown is the local heat current jy(x). The regions
having lower number of layers conduct less effectively.

At the onset of critical strain smectic bands, which have lesser number of particle layers, start

nucleating (Fig. 6.2). These regions are much less effective in transmitting heat than the solid

phase and the heat current falls rapidly as the size of the smectic bands grow. At about the

strain value εxx ≈ 0.15 the whole system is spanned by the smectic. Beyond this strain there is

no appreciable change in the heat current. The solid line in Fig. 6.3 is an estimate from a simple

analysis explained in Sec. (6.2).

In Fig. 6.4 we plot the local steady state heat current jy(x) for a system of 40 × 10 particles

at a strain εxx = 0.118 i.e. at a strain corresponding to the solid-smectic phase coexistence.

At this same strain the number of layers averaged over 103 configurations have been plotted.

It clearly shows that the local heat current is smaller in regions with smaller number of layers.

This is the reason behind getting a sharp drop in average heat current after the onset of phase

coexistence.

(b)Strain in y direction - Next we consider the case where, again starting from the density

η = 0.85, we impose a strain along the y−direction. As shown in Fig. 6.5, the heat current jy

now has a completely different nature. The initial fall is much steeper and has a form different

from the linear drop in Fig. 6.3. The approximate analytic curve is explained in Sec. (6.2). At

about εyy ≈ 0.1 we see a sharp and presumably discontinuous jump in the current. At this point

the system goes over to a buckled phase (Fig. 6.6b) in which different parts of solid (along

x- direction) are shifted in y-direction by small displacement to cover extra space between the

walls[118–120]. A further small strain induces a layering transition and the system breaks into
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Figure 6.5: Plot of jy (in units of kBT/τsd) versus εyy for different channel lengths. The channel
width is Ny = 10 layers. The starting packing fraction is η = 0.85. The jump in current occurs at the
strain value where the number of layers in the y−direction increases by one and the system goes to a
smectic phase. The solid line shows the theoretical prediction of dependence of the heat current on
strain [ see Sec. (6.2) ].

Ny = 11 layered solid and Ny = 10 layered highly fluctuating smectic like regions. At even

higher strains (εyy ∼ 0.2) the whole system eventually melts to a Ny = 11 layered smectic phase.

The phase behavior of this system is interesting and will be discussed in detail elsewhere[166].

Unlike in the case with applied strain in the x−direction, in the present case the buckling-

layering transition is very sharp. Even though the overall density has decreased , due to buckling

and increase in number of layers in the conducting direction, there is an increase in the energy

transferring collisions and hence the heat current. The plots in Fig. 6.6 show the structural

changes that occur in the system as one goes through the transition.

We find in general that the heat current along any direction within the solid follows the

same qualitative features as the stress component along the same direction. This can be seen in

Fig.6.7 where we have plotted jy versus εxx for two starting densities of solids η = 0.85, 0.89.

In the inset we show the corresponding −σyy versus εxx curves and see that they follow the same

qualitative behavior as the heat current curves. The reason for this is that microscopically they

both originate from interparticle collisions. Infact the microscopic expressions for the total heat

current [ see Eq. (6.11) in Sec. (6.2) ] is very similar to that for the stress tensor component,
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(a)

(b)

(c)

Figure 6.6: Plots obtained by superposition of 500 steady state configurations of a portion of 40×10
system taken at equal time intervals. Starting from η = 0.85 imposition of strains (a) εyy = 0.05, (b)
εyy = 0.1, (c) εyy = 0.12 gives rise to these structures. The colors code local density of points from
red/dark (high) to blue/light (low). (a) Solid phase. (b) A mixture of 10-layered solid and a buckling
phase. (c) An 11-layered solid in contact with 10-layered smectic like region.

with an extra velocity factor. The stress tensor is given by:

Aσαβ = −
∑

i

〈muα
i uβ

i 〉 +
∑

i<j

〈

∂φ(rij)

∂rij

xα
ijx

β
ij

rij

〉

, (6.3)

where {xα
i , uα

i } refer to the α-th component of position and velocity of the ith particle, r2
ij =

∑

α(xα
ij)

2 and φ(rij) is the interparticle potential. For a hard disk system,
∂φ(rij)

∂rij
can be replaced

by −kBTδ(rij −d). Also in equilibrium we have 〈muα
i uβ

i 〉 = kBTδαβ and hence the stress tensor
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Figure 6.7: Plot of jy (in units of kBT/τsd ) versus εxx for two different starting values of the
packing fraction. ♦ corresponds to a starting value of η = 0.89 while + is for η = 0.85. In both
the cases the initial solid size was 80 × 10. The inset shows corresponding plots of −σyy (in units of
kBT/d2) versus εxx. Notice that stress-strain curve has the same qualitative profile as the jy versus
εxx curve.

becomes:

Aσαβ = −kBT

[

Nδαβ +

〈

∑

i<j

xα
ijx

β
ij

rij

δ(rij(t) − d)

〉 ]

.

Using collision time simulation it is easier to evaluate the stress tensor in the following way. We

can rewrite Eq. (6.3) as

Aσαβ = −NkBTδαβ −
∑

i<j

〈

xα
ijf

β
ij

〉

.

We use the idea that 〈. . .〉 can be replaced by a time average so that from Eq. (6.3) we have
〈

xα
ijf

β
ij

〉

= − lim
τ→∞

1

τ

∫ τ

0

dtxα
ijf

β
ij .

Now note that during a collision we have
∫

dtfβ
ij = ∆pβ

ij where ∆~pij is the change in momentum

of ith particle due to collision with jth particle. It can be shown that ∆~pij = −(~uij.r̂ij)r̂ij where

r̂ij = ~rij/rij and ~uij = ~ui − ~uj and ~ri, ~ui are evaluated just before a collision. This change in

momentum occurs for a single pair of particle during one collision event. To get the stress tensor

we sum over all the collision events in the time interval τ between all pairs of particles. Therefore

in collision time dynamics we get the following expression for the stress tensor,

Aσαβ = −NkBTδαβ + lim
τ→∞

1

τ

∑

τc

∑

i<j

∆pα
ijx

β
ij , (6.4)
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where
∑

τc
denotes a summation over all collisions in time τ .

6.2 Analysis of Qualitative Features

We briefly outline a derivation of the expression for the heat flux. For the special case of a hard

disk system this simplifies somewhat. We will show that starting from this expression and making

rather simple minded approximations we can explain some of the observed results for heat flux

as a function of imposed external strain.

We consider a system with a general Hamiltonian given by:

H =
∑

i

[
mu2

i

2
+ V (ri)] +

1

2

∑

i,j 6=i

φ(rij) , (6.5)

where V (ri) is an onsite potential which also includes the wall. To define the heat current density

we need to write a continuity equation of the form: ∂ε(r, t)/∂t + ∂jα(r, t)/∂xα = 0. The local

energy density is given by:

ε(r, t) =
∑

i

δ(r − ri)hi where

hi =
mu2

i

2
+ V (ri) +

1

2

∑

j 6=i

φ(rij)

Taking a derivative with respect to time gives

∂ε

∂t
= − ∂

∂xα

∑

i

δ(r − ri)hiu
α
i +

∑

i

δ(r − ri)ḣi (6.6)

= − ∂

∂xα
jK
α + W U (6.7)

where jK =
∑

i δ(r − ri)hiui is the convective part of the energy current. We will now try to

write the remaining part given by W U as a divergence term. We have

W U =
∑

i

δ(r − ri)ḣi

=
∑

i

δ(r − ri)[muα
i u̇α

i +
∂V (ri)

∂xα
i

uα
i

− 1

2

∑

j 6=i

(fα
iju

α
i + fα

jiu
α
j )] ,

where fα
ij = −∂φ(rij)/∂xα

i . Using the equation of motion mu̇α
i = −∂V /∂xα

i +
∑

j 6=i f
α
ij we get

W U =
1

2

∑

i,j 6=i

δ(r − ri)( fα
iju

α
i − fα

jiu
α
j ) . (6.8)



6.2 Analysis of Qualitative Features 103

With the identification W U = −∂jU
α /∂xα and using fij = −fji we finally get:

jU
α (r) =

1

2

∑

i,j 6=i

θ(xα
i − xα)

∏

ν 6=α

δ(xν − xν
i )f

β
ij(u

β
i + uβ

j ) (6.9)

where θ(x) is the Heaviside step function. This formula has a simple physical interpretation. First

note that we need to sum over only those i for which xα
i > xα. Then the formula basically gives

us the net rate at which work is done by particles on the left of xα on the particles on the right

which is thus the rate at which energy flows from left to right. The other part, jK
α , gives the

energy flow as a result of physical motion of particles across xα. Let us look at the total current

in the system. Integrating the current density jU
α over all space we get:

IU
α =

1

2

∑

i,j 6=i

xα
i fβ

ij(u
β
i + uβ

j )

= −1

2

∑

i,j 6=i

xα
i

∂φ(rij)

∂rij

xβ
ij

rij

(uβ
i + uβ

j )

= −1

4

∑

i,j 6=i

∂φ(rij)

∂rij

xα
ijx

β
ij

rij
(uβ

i + uβ
j ) . (6.10)

Including the convective part and taking an average over the steady state we finally get:

〈Iα〉 = 〈IK
α 〉 + 〈IU

α 〉 =
∑

i

〈 hiu
α
i 〉

− 1

4

∑

i,j 6=i

〈 ∂φ(rij)

∂rij

xα
ijx

β
ij

rij
(uβ

i + uβ
j ) 〉 . (6.11)

We note that for a general phase space variable A({xi, ui}) the average 〈A〉 is the time average

limτ→∞(1/τ)
∫ τ

0
dtA({xi(t), ui(t)}).

Finding the energy current for hard disk system: The energy current expression

involves the velocities of the colliding particles which change during a collision so we have to be

careful. We use the following expression for 〈IU
α 〉:

〈 IU
α 〉 =

1

4

∑

i,j 6=i

〈 xα
ij(fij

βuβ
i − fβ

jiu
β
j ) 〉

= lim
τ→∞

1

τ

∫ τ

0

dt
1

4

∑

i,j 6=i

xα
ij(f

β
iju

β
i − fβ

jiu
β
j ) (6.12)

Now if we integrate across a collision we see that
∫

dt(fij.ui) gives the change in kinetic energy

of the ith particle during the collision while
∫

dt(fji.uj) gives the change in kinetic energy of the
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jth particle. Hence we get

〈 IU
α 〉 =

∑

i,j 6=i

lim
τ→∞

1

τ

∑

tc

1

4
xα

ij(∆Ki − ∆Kj)

=
∑

i<j

〈 xα
ij∆Ki 〉c
〈 τij 〉c

(6.13)

where we have used the fact that for elastic collisions ∆Ki = −∆Kj and
∑

tc
denotes a sum-

mation over all collisions, in the time interval τ , between pairs {ij}. The time interval between

successive collisions between ith and jth particles is denoted by τij and the average 〈 ... 〉c in

the last line denotes a collisional average. Thus 〈τij〉c = limτ→∞ τ/Nij(τ), where Nij(τ) is the

number of collisions between ith and jth particles in time τ . For hard spheres the convective

part of the current involves only the kinetic energy and is given by 〈 IK
α 〉 =

∑

i 〈 (mu2
i /2)uα

i 〉.
Using these expressions we now try to obtain estimates of the heat current and its dependence

on strain in the close packed limit where the system looks like a solid with the structure of a

strained triangular lattice.

In the close packed limit the convection current can be neglected and we focus only on the

conductive part given by 〈IU〉 = 〈IU
2 〉 (for conduction along the y−direction). At this point we

assume local thermal equilibrium (LTE) which we prove from our simulation data at the end of

this section. Assuming LTE we write the following approximate form for the energy change ∆Ki

during a collision:

∆Ki = kB(T (yj) − T (yi)) = −kB
dT

dy
yij = yij

kB∆T

Ly
,

where we have denoted x
(α=2)
i = yi and ∆T = T1 − T2. The temperature gradient has been

assumed to be small and constant. Further we assume that in the close packed limit that we are

considering, only nearest neighbor pairs {< ij >} contribute to the current in Eq. (6.13) and

that they contribute equally. We then get the following approximate form for the total current:

〈Iy〉 ≈
3NkB∆T

Ly

y2
c

τc
, (6.14)

where τc is the average time between successive collisions between two particles while y2
c is the

mean square separation along the y−axis of the colliding particles. Finally, denoting the density

of particles by ρ = N/A we get for the current density:

jy =
〈Iy〉
A ≈ 3ρkB∆T

Ly

y2
c

τc
. (6.15)

For strains εxx and εyy in the x and y directions we have ρ = ρ0/[(1 + εxx) (1 + εyy)]. We

estimate y2
c and τc from a simple equilibrium free-volume theory, known as fixed neighbour free
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Figure 6.8: Plots showing comparision of the analytically calculated values of [y2
c ]fv and [τc]fv with

those obtained from a free volume simulation of a single disk moving within the free volume cage. The
free volume corresponds to a starting unstrained triangular lattice at η = 0.85 which is then strained
along x or y directions.

volume theory (FNFVT) [ See Sec.5.3 of chapter-5 ]. In this picture we think of a single disk

moving in a fixed cage formed by taking the average positions of its six nearest neighbor disks

[see Fig.5.10]. For different values of the strains we then evaluate the average values [y2
c ]fv and

[τc]fv for the moving particle from FNFVT. We assume that the position of the center of the

moving disk P0(x, y), at the time of collision with any one of the six fixed disks, is uniformly

distributed on the boundary B of the free-volume. Hence [y2
c ]fv is easily calculated using the

expression:

[y2
c ]fv =

∑

i

∫

Bi
ds(y − yi)

2

LB
, (6.16)

where Bi is the part of the boundary B of the free volume when the middle disk is in contact with

the ith fixed disk, ds is the infintesimal length element on B while LB is the total length of B. Let

the unstrained lattice parameters be a0
x, a0

y =
√

3a0
x/2. Under strain we have ax = a0

x(1 + εxx)

and ay = a0
y(1 + εyy). Using elementary geometry we can then evaluate [y2

c ]fv from Eq. (6.16)

in terms of εxx, εyy and the unstrained lattice parameter a0
x. An exact calculation of [τc]fv

is nontrivial. However we expect [τc]fv = c V
1/2
fv /T 1/2 where Vfv is the “free volume” [see

Fig. 5.10] and c is a constant factor of O(1) which we will use as a fitting parameter. The

calculated values for [y2
c ]fv and [τc]fv are shown in Fig. 6.8. Also shown are their values obtained

from an equilibrium simulation of a single disk moving inside the free volume cage. Thus we

obtain the following estimate for the heat current:

[jy]fv =
3ρkBT 1/2∆T

Ly

[y2
c ]fv

c V
1/2
fv

. (6.17)

We plot in Fig. (6.3,6.5) the above estimate of [jy]fv along with the results from simulations.

We find that the overall features of the simulation are reproduced with c = 0.42.
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Figure 6.9: Plot showing effect on jy of negative strains applied in the x and y directions. The
system is prepared initially in a triangular lattice at η = 0.85. Note that negative εxx reduces jy whereas
negative εyy increases jy.
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Figure 6.10: Comparison of simulation results for jy with the approximate formula in Eq. (6.15)
where τc and y2

c are also calculated directly from the same simulation. The results are for a 40 × 10
system with starting value of η = 0.85 and strained along x−direction.

For small strain [y2
c (εxx)]fv ∼ 0.5 + αεxx − β1ε

2
xx, [y2

c (εyy)]fv ∼ 0.5 − αεyy + β2ε
2
yy and

[τc]fv ∼ (γ1 + γ2ε − γ3ε
2) where ε stands for either εxx or εyy and α, β1, β2, γ1, γ2, γ3 are all

positive constants that depend only on a0
x (we do not write them explicitly since the expressions

are messy and unilluminating). For η = 0.85 we have α = 7.62, β1 = 121.77, β2 = 124.37 and

γ1 = 0.02, γ2 = 0.33, γ3 = 1.125. From these small strain scaling forms we find that jy(εyy)

always decreases with positive εyy and increases with negative or compressive εyy (note that
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Figure 6.11: Plot of temperature profile and fourth moment of velocity for a strained 40 × 10
lattice. The unstrained packing fraction was η = 0.85 and the system was strained to εxx = 0.0625.

we always consider starting configurations of a triangular solid of any density). On the other

hand the sign of the change in jy(εxx) will depend on the relative magnitudes of α, β1 and γ .

For starting density η = 0.85, jy(εxx) decreases both for positive and negative εxx. In Fig. 6.9

we show the effect of compressive strains εxx and εyy on the heat current jy and compare the

simulation results with the free volume theory.

It is possible to calculate y2
c and τc directly from our nonequilibrium collision time dynamics

simulation. The mean collision time τc is obtained by dividing the total simulation time by the

total number of collisions per colliding pair. Similarly y2
c is evaluated at every collision and we

then obtain its average. Inserting these values of τc and 〈y2
c〉 into the right hand side of Eq. (6.15)

we get an estimate of the current as given by our theory (without making use of free-volume

theory). In Fig. 6.10 we compare this value of the current jy, for strain ε = εxx, and compare it

with the simulation results. The excellent agreement between the two indicates that our simple

theory is quite accurate.

We have also tested the assumptions of a linear temperature profile and the assumption of

local thermal equilibrium (LTE) that we have used in our theory. In our simulations the local

temperature is defined from the local kinetic energy density, i.e. kBT = 〈m~u2/2〉. Local thermal

equilibrium requires a close to Gaussian distribution of the local velocity with a width given

by the same temperarture. The assumption of LTE can thus be tested by looking at higher

moments of the velocity, evaluated locally. Thus we should have 〈~u4〉 = 8(kBT/m)2. From our

simulation we find out 〈~u4(y)〉 and kBT (y) as functions of the distance y from the cold to hot

reservoir. The plot in Fig. 6.11 shows that the temperature profile is appoximately linear and

LTE is approximately valid. We use our theory only in the solid phase and in this case there is
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Figure 6.12: Plot of jy versus ∆T = T2 − T1 for a 40 × 10 triangular lattice at η = 0.85. We see
that the current increases linearly with the applied gradient.

not much variation in the direction transverse to heat flow (x−direction).

Finally we find that the heat conduction in the small confined lattice under small strains shows

a linear response behaviour. This can be seen in Fig. 6.12 where we plot jy versus ∆T = T2 −T1

for a 40 × 10 triangular lattice at η = 0.85. Note that, as mentioned in the introduction, the

bulk thermal conductivity of a two-dimensional system is expected to be divergent and the linear

response behaviour observed here is only relevant for a finite system in certain regimes (solid

under small strains).

6.3 Summary and Conclusion

In this chapter we have studied heat conduction in a two-dimensional solid formed from hard

disks confined in a narrow structureless channel. The channel has a small width (∼ 10 particle

layers) and is long (∼ 100 particles). Thus our system is in the nanoscale regime. We have

shown that structural changes that occur when this solid is strained can lead to sudden jumps

in the heat current. From the system sizes that we have studied it is not possible to conclude

that these jumps will persist in the limit that the channel length becomes infinite. However the

finite size results are interesting and relevant since real nano-sized solids are small. We have also

proposed a free volume theory type calculation of the heat current. While being heuristic it gives

correct order of magnitude estimates and also reproduces qualitative trends in the current-strain

graph. This simple approach should be useful in calculating the heat conductivity of a hard sphere

solid in the high density limit.

The property of large change of heat current could be utilized to make a system perform as a

mechanically controlled switch of heat current. Similar results are also expected for the electrical
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conductance and this is shown to be true at least following one protocol of straining in Ref.[167].

From this point of view it seems worthwhile to perform similar studies on transport in confined

nano-systems in three dimensions and also with different interparticle interactions.
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